Solve for n
n\in \left(-\infty,0\right)\cup \left(\frac{67}{3},\infty\right)
Share
Copied to clipboard
64n+n\left(n-1\right)\left(-3\right)<0
Multiply both sides of the equation by 2. Since 2 is positive, the inequality direction remains the same.
64n+\left(n^{2}-n\right)\left(-3\right)<0
Use the distributive property to multiply n by n-1.
64n-3n^{2}+3n<0
Use the distributive property to multiply n^{2}-n by -3.
67n-3n^{2}<0
Combine 64n and 3n to get 67n.
-67n+3n^{2}>0
Multiply the inequality by -1 to make the coefficient of the highest power in 67n-3n^{2} positive. Since -1 is negative, the inequality direction is changed.
n\left(3n-67\right)>0
Factor out n.
n<0 n-\frac{67}{3}<0
For the product to be positive, n and n-\frac{67}{3} have to be both negative or both positive. Consider the case when n and n-\frac{67}{3} are both negative.
n<0
The solution satisfying both inequalities is n<0.
n-\frac{67}{3}>0 n>0
Consider the case when n and n-\frac{67}{3} are both positive.
n>\frac{67}{3}
The solution satisfying both inequalities is n>\frac{67}{3}.
n<0\text{; }n>\frac{67}{3}
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}