Solve for c
c=\frac{\sqrt{31}-1}{8}\approx 0.570970545
c=\frac{-\sqrt{31}-1}{8}\approx -0.820970545
Share
Copied to clipboard
32c^{2}+8c-15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
c=\frac{-8±\sqrt{8^{2}-4\times 32\left(-15\right)}}{2\times 32}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 32 for a, 8 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-8±\sqrt{64-4\times 32\left(-15\right)}}{2\times 32}
Square 8.
c=\frac{-8±\sqrt{64-128\left(-15\right)}}{2\times 32}
Multiply -4 times 32.
c=\frac{-8±\sqrt{64+1920}}{2\times 32}
Multiply -128 times -15.
c=\frac{-8±\sqrt{1984}}{2\times 32}
Add 64 to 1920.
c=\frac{-8±8\sqrt{31}}{2\times 32}
Take the square root of 1984.
c=\frac{-8±8\sqrt{31}}{64}
Multiply 2 times 32.
c=\frac{8\sqrt{31}-8}{64}
Now solve the equation c=\frac{-8±8\sqrt{31}}{64} when ± is plus. Add -8 to 8\sqrt{31}.
c=\frac{\sqrt{31}-1}{8}
Divide -8+8\sqrt{31} by 64.
c=\frac{-8\sqrt{31}-8}{64}
Now solve the equation c=\frac{-8±8\sqrt{31}}{64} when ± is minus. Subtract 8\sqrt{31} from -8.
c=\frac{-\sqrt{31}-1}{8}
Divide -8-8\sqrt{31} by 64.
c=\frac{\sqrt{31}-1}{8} c=\frac{-\sqrt{31}-1}{8}
The equation is now solved.
32c^{2}+8c-15=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
32c^{2}+8c-15-\left(-15\right)=-\left(-15\right)
Add 15 to both sides of the equation.
32c^{2}+8c=-\left(-15\right)
Subtracting -15 from itself leaves 0.
32c^{2}+8c=15
Subtract -15 from 0.
\frac{32c^{2}+8c}{32}=\frac{15}{32}
Divide both sides by 32.
c^{2}+\frac{8}{32}c=\frac{15}{32}
Dividing by 32 undoes the multiplication by 32.
c^{2}+\frac{1}{4}c=\frac{15}{32}
Reduce the fraction \frac{8}{32} to lowest terms by extracting and canceling out 8.
c^{2}+\frac{1}{4}c+\left(\frac{1}{8}\right)^{2}=\frac{15}{32}+\left(\frac{1}{8}\right)^{2}
Divide \frac{1}{4}, the coefficient of the x term, by 2 to get \frac{1}{8}. Then add the square of \frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
c^{2}+\frac{1}{4}c+\frac{1}{64}=\frac{15}{32}+\frac{1}{64}
Square \frac{1}{8} by squaring both the numerator and the denominator of the fraction.
c^{2}+\frac{1}{4}c+\frac{1}{64}=\frac{31}{64}
Add \frac{15}{32} to \frac{1}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(c+\frac{1}{8}\right)^{2}=\frac{31}{64}
Factor c^{2}+\frac{1}{4}c+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c+\frac{1}{8}\right)^{2}}=\sqrt{\frac{31}{64}}
Take the square root of both sides of the equation.
c+\frac{1}{8}=\frac{\sqrt{31}}{8} c+\frac{1}{8}=-\frac{\sqrt{31}}{8}
Simplify.
c=\frac{\sqrt{31}-1}{8} c=\frac{-\sqrt{31}-1}{8}
Subtract \frac{1}{8} from both sides of the equation.
x ^ 2 +\frac{1}{4}x -\frac{15}{32} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 32
r + s = -\frac{1}{4} rs = -\frac{15}{32}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{1}{8} - u s = -\frac{1}{8} + u
Two numbers r and s sum up to -\frac{1}{4} exactly when the average of the two numbers is \frac{1}{2}*-\frac{1}{4} = -\frac{1}{8}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{1}{8} - u) (-\frac{1}{8} + u) = -\frac{15}{32}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{15}{32}
\frac{1}{64} - u^2 = -\frac{15}{32}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{15}{32}-\frac{1}{64} = -\frac{31}{64}
Simplify the expression by subtracting \frac{1}{64} on both sides
u^2 = \frac{31}{64} u = \pm\sqrt{\frac{31}{64}} = \pm \frac{\sqrt{31}}{8}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{1}{8} - \frac{\sqrt{31}}{8} = -0.821 s = -\frac{1}{8} + \frac{\sqrt{31}}{8} = 0.571
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}