Factor
\left(8c-3\right)\left(4c+9\right)
Evaluate
\left(8c-3\right)\left(4c+9\right)
Share
Copied to clipboard
32c^{2}+60c-27
Multiply and combine like terms.
a+b=60 ab=32\left(-27\right)=-864
Factor the expression by grouping. First, the expression needs to be rewritten as 32c^{2}+ac+bc-27. To find a and b, set up a system to be solved.
-1,864 -2,432 -3,288 -4,216 -6,144 -8,108 -9,96 -12,72 -16,54 -18,48 -24,36 -27,32
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -864.
-1+864=863 -2+432=430 -3+288=285 -4+216=212 -6+144=138 -8+108=100 -9+96=87 -12+72=60 -16+54=38 -18+48=30 -24+36=12 -27+32=5
Calculate the sum for each pair.
a=-12 b=72
The solution is the pair that gives sum 60.
\left(32c^{2}-12c\right)+\left(72c-27\right)
Rewrite 32c^{2}+60c-27 as \left(32c^{2}-12c\right)+\left(72c-27\right).
4c\left(8c-3\right)+9\left(8c-3\right)
Factor out 4c in the first and 9 in the second group.
\left(8c-3\right)\left(4c+9\right)
Factor out common term 8c-3 by using distributive property.
32c^{2}+60c-27
Combine 72c and -12c to get 60c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}