Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

p+q=20 pq=32\left(-3\right)=-96
Factor the expression by grouping. First, the expression needs to be rewritten as 32a^{2}+pa+qa-3. To find p and q, set up a system to be solved.
-1,96 -2,48 -3,32 -4,24 -6,16 -8,12
Since pq is negative, p and q have the opposite signs. Since p+q is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -96.
-1+96=95 -2+48=46 -3+32=29 -4+24=20 -6+16=10 -8+12=4
Calculate the sum for each pair.
p=-4 q=24
The solution is the pair that gives sum 20.
\left(32a^{2}-4a\right)+\left(24a-3\right)
Rewrite 32a^{2}+20a-3 as \left(32a^{2}-4a\right)+\left(24a-3\right).
4a\left(8a-1\right)+3\left(8a-1\right)
Factor out 4a in the first and 3 in the second group.
\left(8a-1\right)\left(4a+3\right)
Factor out common term 8a-1 by using distributive property.
32a^{2}+20a-3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-20±\sqrt{20^{2}-4\times 32\left(-3\right)}}{2\times 32}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-20±\sqrt{400-4\times 32\left(-3\right)}}{2\times 32}
Square 20.
a=\frac{-20±\sqrt{400-128\left(-3\right)}}{2\times 32}
Multiply -4 times 32.
a=\frac{-20±\sqrt{400+384}}{2\times 32}
Multiply -128 times -3.
a=\frac{-20±\sqrt{784}}{2\times 32}
Add 400 to 384.
a=\frac{-20±28}{2\times 32}
Take the square root of 784.
a=\frac{-20±28}{64}
Multiply 2 times 32.
a=\frac{8}{64}
Now solve the equation a=\frac{-20±28}{64} when ± is plus. Add -20 to 28.
a=\frac{1}{8}
Reduce the fraction \frac{8}{64} to lowest terms by extracting and canceling out 8.
a=-\frac{48}{64}
Now solve the equation a=\frac{-20±28}{64} when ± is minus. Subtract 28 from -20.
a=-\frac{3}{4}
Reduce the fraction \frac{-48}{64} to lowest terms by extracting and canceling out 16.
32a^{2}+20a-3=32\left(a-\frac{1}{8}\right)\left(a-\left(-\frac{3}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{8} for x_{1} and -\frac{3}{4} for x_{2}.
32a^{2}+20a-3=32\left(a-\frac{1}{8}\right)\left(a+\frac{3}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
32a^{2}+20a-3=32\times \frac{8a-1}{8}\left(a+\frac{3}{4}\right)
Subtract \frac{1}{8} from a by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
32a^{2}+20a-3=32\times \frac{8a-1}{8}\times \frac{4a+3}{4}
Add \frac{3}{4} to a by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
32a^{2}+20a-3=32\times \frac{\left(8a-1\right)\left(4a+3\right)}{8\times 4}
Multiply \frac{8a-1}{8} times \frac{4a+3}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
32a^{2}+20a-3=32\times \frac{\left(8a-1\right)\left(4a+3\right)}{32}
Multiply 8 times 4.
32a^{2}+20a-3=\left(8a-1\right)\left(4a+3\right)
Cancel out 32, the greatest common factor in 32 and 32.
x ^ 2 +\frac{5}{8}x -\frac{3}{32} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 32
r + s = -\frac{5}{8} rs = -\frac{3}{32}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{5}{16} - u s = -\frac{5}{16} + u
Two numbers r and s sum up to -\frac{5}{8} exactly when the average of the two numbers is \frac{1}{2}*-\frac{5}{8} = -\frac{5}{16}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{5}{16} - u) (-\frac{5}{16} + u) = -\frac{3}{32}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{3}{32}
\frac{25}{256} - u^2 = -\frac{3}{32}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{3}{32}-\frac{25}{256} = -\frac{49}{256}
Simplify the expression by subtracting \frac{25}{256} on both sides
u^2 = \frac{49}{256} u = \pm\sqrt{\frac{49}{256}} = \pm \frac{7}{16}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{5}{16} - \frac{7}{16} = -0.750 s = -\frac{5}{16} + \frac{7}{16} = 0.125
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.