Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(16-x^{16}\right)
Factor out 2.
\left(4+x^{8}\right)\left(4-x^{8}\right)
Consider 16-x^{16}. Rewrite 16-x^{16} as 4^{2}-\left(-x^{8}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{8}+4\right)\left(-x^{8}+4\right)
Reorder the terms.
\left(2+x^{4}\right)\left(2-x^{4}\right)
Consider -x^{8}+4. Rewrite -x^{8}+4 as 2^{2}-\left(-x^{4}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{4}+2\right)\left(-x^{4}+2\right)
Reorder the terms.
2\left(x^{8}+4\right)\left(x^{4}+2\right)\left(-x^{4}+2\right)
Rewrite the complete factored expression. The following polynomials are not factored since they do not have any rational roots: -x^{4}+2,x^{4}+2,x^{8}+4.