Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(16x^{2}-2x-3\right)
Factor out 2.
a+b=-2 ab=16\left(-3\right)=-48
Consider 16x^{2}-2x-3. Factor the expression by grouping. First, the expression needs to be rewritten as 16x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
1,-48 2,-24 3,-16 4,-12 6,-8
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -48.
1-48=-47 2-24=-22 3-16=-13 4-12=-8 6-8=-2
Calculate the sum for each pair.
a=-8 b=6
The solution is the pair that gives sum -2.
\left(16x^{2}-8x\right)+\left(6x-3\right)
Rewrite 16x^{2}-2x-3 as \left(16x^{2}-8x\right)+\left(6x-3\right).
8x\left(2x-1\right)+3\left(2x-1\right)
Factor out 8x in the first and 3 in the second group.
\left(2x-1\right)\left(8x+3\right)
Factor out common term 2x-1 by using distributive property.
2\left(2x-1\right)\left(8x+3\right)
Rewrite the complete factored expression.
32x^{2}-4x-6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 32\left(-6\right)}}{2\times 32}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 32\left(-6\right)}}{2\times 32}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-128\left(-6\right)}}{2\times 32}
Multiply -4 times 32.
x=\frac{-\left(-4\right)±\sqrt{16+768}}{2\times 32}
Multiply -128 times -6.
x=\frac{-\left(-4\right)±\sqrt{784}}{2\times 32}
Add 16 to 768.
x=\frac{-\left(-4\right)±28}{2\times 32}
Take the square root of 784.
x=\frac{4±28}{2\times 32}
The opposite of -4 is 4.
x=\frac{4±28}{64}
Multiply 2 times 32.
x=\frac{32}{64}
Now solve the equation x=\frac{4±28}{64} when ± is plus. Add 4 to 28.
x=\frac{1}{2}
Reduce the fraction \frac{32}{64} to lowest terms by extracting and canceling out 32.
x=-\frac{24}{64}
Now solve the equation x=\frac{4±28}{64} when ± is minus. Subtract 28 from 4.
x=-\frac{3}{8}
Reduce the fraction \frac{-24}{64} to lowest terms by extracting and canceling out 8.
32x^{2}-4x-6=32\left(x-\frac{1}{2}\right)\left(x-\left(-\frac{3}{8}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{2} for x_{1} and -\frac{3}{8} for x_{2}.
32x^{2}-4x-6=32\left(x-\frac{1}{2}\right)\left(x+\frac{3}{8}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
32x^{2}-4x-6=32\times \frac{2x-1}{2}\left(x+\frac{3}{8}\right)
Subtract \frac{1}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
32x^{2}-4x-6=32\times \frac{2x-1}{2}\times \frac{8x+3}{8}
Add \frac{3}{8} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
32x^{2}-4x-6=32\times \frac{\left(2x-1\right)\left(8x+3\right)}{2\times 8}
Multiply \frac{2x-1}{2} times \frac{8x+3}{8} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
32x^{2}-4x-6=32\times \frac{\left(2x-1\right)\left(8x+3\right)}{16}
Multiply 2 times 8.
32x^{2}-4x-6=2\left(2x-1\right)\left(8x+3\right)
Cancel out 16, the greatest common factor in 32 and 16.