Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

32x^{2}-285x+625=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-285\right)±\sqrt{\left(-285\right)^{2}-4\times 32\times 625}}{2\times 32}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 32 for a, -285 for b, and 625 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-285\right)±\sqrt{81225-4\times 32\times 625}}{2\times 32}
Square -285.
x=\frac{-\left(-285\right)±\sqrt{81225-128\times 625}}{2\times 32}
Multiply -4 times 32.
x=\frac{-\left(-285\right)±\sqrt{81225-80000}}{2\times 32}
Multiply -128 times 625.
x=\frac{-\left(-285\right)±\sqrt{1225}}{2\times 32}
Add 81225 to -80000.
x=\frac{-\left(-285\right)±35}{2\times 32}
Take the square root of 1225.
x=\frac{285±35}{2\times 32}
The opposite of -285 is 285.
x=\frac{285±35}{64}
Multiply 2 times 32.
x=\frac{320}{64}
Now solve the equation x=\frac{285±35}{64} when ± is plus. Add 285 to 35.
x=5
Divide 320 by 64.
x=\frac{250}{64}
Now solve the equation x=\frac{285±35}{64} when ± is minus. Subtract 35 from 285.
x=\frac{125}{32}
Reduce the fraction \frac{250}{64} to lowest terms by extracting and canceling out 2.
x=5 x=\frac{125}{32}
The equation is now solved.
32x^{2}-285x+625=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
32x^{2}-285x+625-625=-625
Subtract 625 from both sides of the equation.
32x^{2}-285x=-625
Subtracting 625 from itself leaves 0.
\frac{32x^{2}-285x}{32}=-\frac{625}{32}
Divide both sides by 32.
x^{2}-\frac{285}{32}x=-\frac{625}{32}
Dividing by 32 undoes the multiplication by 32.
x^{2}-\frac{285}{32}x+\left(-\frac{285}{64}\right)^{2}=-\frac{625}{32}+\left(-\frac{285}{64}\right)^{2}
Divide -\frac{285}{32}, the coefficient of the x term, by 2 to get -\frac{285}{64}. Then add the square of -\frac{285}{64} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{285}{32}x+\frac{81225}{4096}=-\frac{625}{32}+\frac{81225}{4096}
Square -\frac{285}{64} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{285}{32}x+\frac{81225}{4096}=\frac{1225}{4096}
Add -\frac{625}{32} to \frac{81225}{4096} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{285}{64}\right)^{2}=\frac{1225}{4096}
Factor x^{2}-\frac{285}{32}x+\frac{81225}{4096}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{285}{64}\right)^{2}}=\sqrt{\frac{1225}{4096}}
Take the square root of both sides of the equation.
x-\frac{285}{64}=\frac{35}{64} x-\frac{285}{64}=-\frac{35}{64}
Simplify.
x=5 x=\frac{125}{32}
Add \frac{285}{64} to both sides of the equation.