Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

32x^{2}-104x+73=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-104\right)±\sqrt{\left(-104\right)^{2}-4\times 32\times 73}}{2\times 32}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 32 for a, -104 for b, and 73 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-104\right)±\sqrt{10816-4\times 32\times 73}}{2\times 32}
Square -104.
x=\frac{-\left(-104\right)±\sqrt{10816-128\times 73}}{2\times 32}
Multiply -4 times 32.
x=\frac{-\left(-104\right)±\sqrt{10816-9344}}{2\times 32}
Multiply -128 times 73.
x=\frac{-\left(-104\right)±\sqrt{1472}}{2\times 32}
Add 10816 to -9344.
x=\frac{-\left(-104\right)±8\sqrt{23}}{2\times 32}
Take the square root of 1472.
x=\frac{104±8\sqrt{23}}{2\times 32}
The opposite of -104 is 104.
x=\frac{104±8\sqrt{23}}{64}
Multiply 2 times 32.
x=\frac{8\sqrt{23}+104}{64}
Now solve the equation x=\frac{104±8\sqrt{23}}{64} when ± is plus. Add 104 to 8\sqrt{23}.
x=\frac{\sqrt{23}+13}{8}
Divide 104+8\sqrt{23} by 64.
x=\frac{104-8\sqrt{23}}{64}
Now solve the equation x=\frac{104±8\sqrt{23}}{64} when ± is minus. Subtract 8\sqrt{23} from 104.
x=\frac{13-\sqrt{23}}{8}
Divide 104-8\sqrt{23} by 64.
x=\frac{\sqrt{23}+13}{8} x=\frac{13-\sqrt{23}}{8}
The equation is now solved.
32x^{2}-104x+73=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
32x^{2}-104x+73-73=-73
Subtract 73 from both sides of the equation.
32x^{2}-104x=-73
Subtracting 73 from itself leaves 0.
\frac{32x^{2}-104x}{32}=-\frac{73}{32}
Divide both sides by 32.
x^{2}+\left(-\frac{104}{32}\right)x=-\frac{73}{32}
Dividing by 32 undoes the multiplication by 32.
x^{2}-\frac{13}{4}x=-\frac{73}{32}
Reduce the fraction \frac{-104}{32} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{13}{4}x+\left(-\frac{13}{8}\right)^{2}=-\frac{73}{32}+\left(-\frac{13}{8}\right)^{2}
Divide -\frac{13}{4}, the coefficient of the x term, by 2 to get -\frac{13}{8}. Then add the square of -\frac{13}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{13}{4}x+\frac{169}{64}=-\frac{73}{32}+\frac{169}{64}
Square -\frac{13}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{13}{4}x+\frac{169}{64}=\frac{23}{64}
Add -\frac{73}{32} to \frac{169}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{8}\right)^{2}=\frac{23}{64}
Factor x^{2}-\frac{13}{4}x+\frac{169}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{8}\right)^{2}}=\sqrt{\frac{23}{64}}
Take the square root of both sides of the equation.
x-\frac{13}{8}=\frac{\sqrt{23}}{8} x-\frac{13}{8}=-\frac{\sqrt{23}}{8}
Simplify.
x=\frac{\sqrt{23}+13}{8} x=\frac{13-\sqrt{23}}{8}
Add \frac{13}{8} to both sides of the equation.