Solve for x
x = \frac{5 \sqrt{3089} - 125}{32} \approx 4.77793327
x=\frac{-5\sqrt{3089}-125}{32}\approx -12.59043327
Graph
Share
Copied to clipboard
32x^{2}+250x-1925=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-250±\sqrt{250^{2}-4\times 32\left(-1925\right)}}{2\times 32}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 32 for a, 250 for b, and -1925 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-250±\sqrt{62500-4\times 32\left(-1925\right)}}{2\times 32}
Square 250.
x=\frac{-250±\sqrt{62500-128\left(-1925\right)}}{2\times 32}
Multiply -4 times 32.
x=\frac{-250±\sqrt{62500+246400}}{2\times 32}
Multiply -128 times -1925.
x=\frac{-250±\sqrt{308900}}{2\times 32}
Add 62500 to 246400.
x=\frac{-250±10\sqrt{3089}}{2\times 32}
Take the square root of 308900.
x=\frac{-250±10\sqrt{3089}}{64}
Multiply 2 times 32.
x=\frac{10\sqrt{3089}-250}{64}
Now solve the equation x=\frac{-250±10\sqrt{3089}}{64} when ± is plus. Add -250 to 10\sqrt{3089}.
x=\frac{5\sqrt{3089}-125}{32}
Divide -250+10\sqrt{3089} by 64.
x=\frac{-10\sqrt{3089}-250}{64}
Now solve the equation x=\frac{-250±10\sqrt{3089}}{64} when ± is minus. Subtract 10\sqrt{3089} from -250.
x=\frac{-5\sqrt{3089}-125}{32}
Divide -250-10\sqrt{3089} by 64.
x=\frac{5\sqrt{3089}-125}{32} x=\frac{-5\sqrt{3089}-125}{32}
The equation is now solved.
32x^{2}+250x-1925=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
32x^{2}+250x-1925-\left(-1925\right)=-\left(-1925\right)
Add 1925 to both sides of the equation.
32x^{2}+250x=-\left(-1925\right)
Subtracting -1925 from itself leaves 0.
32x^{2}+250x=1925
Subtract -1925 from 0.
\frac{32x^{2}+250x}{32}=\frac{1925}{32}
Divide both sides by 32.
x^{2}+\frac{250}{32}x=\frac{1925}{32}
Dividing by 32 undoes the multiplication by 32.
x^{2}+\frac{125}{16}x=\frac{1925}{32}
Reduce the fraction \frac{250}{32} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{125}{16}x+\left(\frac{125}{32}\right)^{2}=\frac{1925}{32}+\left(\frac{125}{32}\right)^{2}
Divide \frac{125}{16}, the coefficient of the x term, by 2 to get \frac{125}{32}. Then add the square of \frac{125}{32} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{125}{16}x+\frac{15625}{1024}=\frac{1925}{32}+\frac{15625}{1024}
Square \frac{125}{32} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{125}{16}x+\frac{15625}{1024}=\frac{77225}{1024}
Add \frac{1925}{32} to \frac{15625}{1024} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{125}{32}\right)^{2}=\frac{77225}{1024}
Factor x^{2}+\frac{125}{16}x+\frac{15625}{1024}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{125}{32}\right)^{2}}=\sqrt{\frac{77225}{1024}}
Take the square root of both sides of the equation.
x+\frac{125}{32}=\frac{5\sqrt{3089}}{32} x+\frac{125}{32}=-\frac{5\sqrt{3089}}{32}
Simplify.
x=\frac{5\sqrt{3089}-125}{32} x=\frac{-5\sqrt{3089}-125}{32}
Subtract \frac{125}{32} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}