Evaluate
\frac{16}{15}\approx 1.066666667
Factor
\frac{2 ^ {4}}{3 \cdot 5} = 1\frac{1}{15} = 1.0666666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{30)}\phantom{1}\\30\overline{)32}\\\end{array}
Use the 1^{st} digit 3 from dividend 32
\begin{array}{l}\phantom{30)}0\phantom{2}\\30\overline{)32}\\\end{array}
Since 3 is less than 30, use the next digit 2 from dividend 32 and add 0 to the quotient
\begin{array}{l}\phantom{30)}0\phantom{3}\\30\overline{)32}\\\end{array}
Use the 2^{nd} digit 2 from dividend 32
\begin{array}{l}\phantom{30)}01\phantom{4}\\30\overline{)32}\\\phantom{30)}\underline{\phantom{}30\phantom{}}\\\phantom{30)9}2\\\end{array}
Find closest multiple of 30 to 32. We see that 1 \times 30 = 30 is the nearest. Now subtract 30 from 32 to get reminder 2. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }2
Since 2 is less than 30, stop the division. The reminder is 2. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}