Evaluate
\frac{11}{5}=2.2
Factor
\frac{11}{5} = 2\frac{1}{5} = 2.2
Share
Copied to clipboard
\begin{array}{l}\phantom{1440)}\phantom{1}\\1440\overline{)3168}\\\end{array}
Use the 1^{st} digit 3 from dividend 3168
\begin{array}{l}\phantom{1440)}0\phantom{2}\\1440\overline{)3168}\\\end{array}
Since 3 is less than 1440, use the next digit 1 from dividend 3168 and add 0 to the quotient
\begin{array}{l}\phantom{1440)}0\phantom{3}\\1440\overline{)3168}\\\end{array}
Use the 2^{nd} digit 1 from dividend 3168
\begin{array}{l}\phantom{1440)}00\phantom{4}\\1440\overline{)3168}\\\end{array}
Since 31 is less than 1440, use the next digit 6 from dividend 3168 and add 0 to the quotient
\begin{array}{l}\phantom{1440)}00\phantom{5}\\1440\overline{)3168}\\\end{array}
Use the 3^{rd} digit 6 from dividend 3168
\begin{array}{l}\phantom{1440)}000\phantom{6}\\1440\overline{)3168}\\\end{array}
Since 316 is less than 1440, use the next digit 8 from dividend 3168 and add 0 to the quotient
\begin{array}{l}\phantom{1440)}000\phantom{7}\\1440\overline{)3168}\\\end{array}
Use the 4^{th} digit 8 from dividend 3168
\begin{array}{l}\phantom{1440)}0002\phantom{8}\\1440\overline{)3168}\\\phantom{1440)}\underline{\phantom{}2880\phantom{}}\\\phantom{1440)9}288\\\end{array}
Find closest multiple of 1440 to 3168. We see that 2 \times 1440 = 2880 is the nearest. Now subtract 2880 from 3168 to get reminder 288. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }288
Since 288 is less than 1440, stop the division. The reminder is 288. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}