Evaluate
\frac{631014}{14701}\approx 42.923202503
Factor
\frac{2 \cdot 3 \cdot 251 \cdot 419}{61 \cdot 241} = 42\frac{13572}{14701} = 42.923202503231074
Share
Copied to clipboard
\begin{array}{l}\phantom{73505)}\phantom{1}\\73505\overline{)3155070}\\\end{array}
Use the 1^{st} digit 3 from dividend 3155070
\begin{array}{l}\phantom{73505)}0\phantom{2}\\73505\overline{)3155070}\\\end{array}
Since 3 is less than 73505, use the next digit 1 from dividend 3155070 and add 0 to the quotient
\begin{array}{l}\phantom{73505)}0\phantom{3}\\73505\overline{)3155070}\\\end{array}
Use the 2^{nd} digit 1 from dividend 3155070
\begin{array}{l}\phantom{73505)}00\phantom{4}\\73505\overline{)3155070}\\\end{array}
Since 31 is less than 73505, use the next digit 5 from dividend 3155070 and add 0 to the quotient
\begin{array}{l}\phantom{73505)}00\phantom{5}\\73505\overline{)3155070}\\\end{array}
Use the 3^{rd} digit 5 from dividend 3155070
\begin{array}{l}\phantom{73505)}000\phantom{6}\\73505\overline{)3155070}\\\end{array}
Since 315 is less than 73505, use the next digit 5 from dividend 3155070 and add 0 to the quotient
\begin{array}{l}\phantom{73505)}000\phantom{7}\\73505\overline{)3155070}\\\end{array}
Use the 4^{th} digit 5 from dividend 3155070
\begin{array}{l}\phantom{73505)}0000\phantom{8}\\73505\overline{)3155070}\\\end{array}
Since 3155 is less than 73505, use the next digit 0 from dividend 3155070 and add 0 to the quotient
\begin{array}{l}\phantom{73505)}0000\phantom{9}\\73505\overline{)3155070}\\\end{array}
Use the 5^{th} digit 0 from dividend 3155070
\begin{array}{l}\phantom{73505)}00000\phantom{10}\\73505\overline{)3155070}\\\end{array}
Since 31550 is less than 73505, use the next digit 7 from dividend 3155070 and add 0 to the quotient
\begin{array}{l}\phantom{73505)}00000\phantom{11}\\73505\overline{)3155070}\\\end{array}
Use the 6^{th} digit 7 from dividend 3155070
\begin{array}{l}\phantom{73505)}000004\phantom{12}\\73505\overline{)3155070}\\\phantom{73505)}\underline{\phantom{}294020\phantom{9}}\\\phantom{73505)9}21487\\\end{array}
Find closest multiple of 73505 to 315507. We see that 4 \times 73505 = 294020 is the nearest. Now subtract 294020 from 315507 to get reminder 21487. Add 4 to quotient.
\begin{array}{l}\phantom{73505)}000004\phantom{13}\\73505\overline{)3155070}\\\phantom{73505)}\underline{\phantom{}294020\phantom{9}}\\\phantom{73505)9}214870\\\end{array}
Use the 7^{th} digit 0 from dividend 3155070
\begin{array}{l}\phantom{73505)}0000042\phantom{14}\\73505\overline{)3155070}\\\phantom{73505)}\underline{\phantom{}294020\phantom{9}}\\\phantom{73505)9}214870\\\phantom{73505)}\underline{\phantom{9}147010\phantom{}}\\\phantom{73505)99}67860\\\end{array}
Find closest multiple of 73505 to 214870. We see that 2 \times 73505 = 147010 is the nearest. Now subtract 147010 from 214870 to get reminder 67860. Add 2 to quotient.
\text{Quotient: }42 \text{Reminder: }67860
Since 67860 is less than 73505, stop the division. The reminder is 67860. The topmost line 0000042 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 42.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}