Solve for A
A=-\frac{3B}{13}+\frac{1553}{31512}
Solve for B
B=-\frac{13A}{3}+\frac{1553}{7272}
Share
Copied to clipboard
3151.2A=155.3-727.2B
Subtract 727.2B from both sides.
3151.2A=-\frac{3636B}{5}+155.3
The equation is in standard form.
\frac{3151.2A}{3151.2}=\frac{-\frac{3636B}{5}+155.3}{3151.2}
Divide both sides of the equation by 3151.2, which is the same as multiplying both sides by the reciprocal of the fraction.
A=\frac{-\frac{3636B}{5}+155.3}{3151.2}
Dividing by 3151.2 undoes the multiplication by 3151.2.
A=-\frac{3B}{13}+\frac{1553}{31512}
Divide 155.3-\frac{3636B}{5} by 3151.2 by multiplying 155.3-\frac{3636B}{5} by the reciprocal of 3151.2.
727.2B=155.3-3151.2A
Subtract 3151.2A from both sides.
727.2B=-\frac{15756A}{5}+155.3
The equation is in standard form.
\frac{727.2B}{727.2}=\frac{-\frac{15756A}{5}+155.3}{727.2}
Divide both sides of the equation by 727.2, which is the same as multiplying both sides by the reciprocal of the fraction.
B=\frac{-\frac{15756A}{5}+155.3}{727.2}
Dividing by 727.2 undoes the multiplication by 727.2.
B=-\frac{13A}{3}+\frac{1553}{7272}
Divide 155.3-\frac{15756A}{5} by 727.2 by multiplying 155.3-\frac{15756A}{5} by the reciprocal of 727.2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}