Solve for x
x=-90
x=70
Graph
Share
Copied to clipboard
6300=20x+x^{2}
Multiply both sides of the equation by 20.
20x+x^{2}=6300
Swap sides so that all variable terms are on the left hand side.
20x+x^{2}-6300=0
Subtract 6300 from both sides.
x^{2}+20x-6300=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=20 ab=-6300
To solve the equation, factor x^{2}+20x-6300 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,6300 -2,3150 -3,2100 -4,1575 -5,1260 -6,1050 -7,900 -9,700 -10,630 -12,525 -14,450 -15,420 -18,350 -20,315 -21,300 -25,252 -28,225 -30,210 -35,180 -36,175 -42,150 -45,140 -50,126 -60,105 -63,100 -70,90 -75,84
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -6300.
-1+6300=6299 -2+3150=3148 -3+2100=2097 -4+1575=1571 -5+1260=1255 -6+1050=1044 -7+900=893 -9+700=691 -10+630=620 -12+525=513 -14+450=436 -15+420=405 -18+350=332 -20+315=295 -21+300=279 -25+252=227 -28+225=197 -30+210=180 -35+180=145 -36+175=139 -42+150=108 -45+140=95 -50+126=76 -60+105=45 -63+100=37 -70+90=20 -75+84=9
Calculate the sum for each pair.
a=-70 b=90
The solution is the pair that gives sum 20.
\left(x-70\right)\left(x+90\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=70 x=-90
To find equation solutions, solve x-70=0 and x+90=0.
6300=20x+x^{2}
Multiply both sides of the equation by 20.
20x+x^{2}=6300
Swap sides so that all variable terms are on the left hand side.
20x+x^{2}-6300=0
Subtract 6300 from both sides.
x^{2}+20x-6300=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=20 ab=1\left(-6300\right)=-6300
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-6300. To find a and b, set up a system to be solved.
-1,6300 -2,3150 -3,2100 -4,1575 -5,1260 -6,1050 -7,900 -9,700 -10,630 -12,525 -14,450 -15,420 -18,350 -20,315 -21,300 -25,252 -28,225 -30,210 -35,180 -36,175 -42,150 -45,140 -50,126 -60,105 -63,100 -70,90 -75,84
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -6300.
-1+6300=6299 -2+3150=3148 -3+2100=2097 -4+1575=1571 -5+1260=1255 -6+1050=1044 -7+900=893 -9+700=691 -10+630=620 -12+525=513 -14+450=436 -15+420=405 -18+350=332 -20+315=295 -21+300=279 -25+252=227 -28+225=197 -30+210=180 -35+180=145 -36+175=139 -42+150=108 -45+140=95 -50+126=76 -60+105=45 -63+100=37 -70+90=20 -75+84=9
Calculate the sum for each pair.
a=-70 b=90
The solution is the pair that gives sum 20.
\left(x^{2}-70x\right)+\left(90x-6300\right)
Rewrite x^{2}+20x-6300 as \left(x^{2}-70x\right)+\left(90x-6300\right).
x\left(x-70\right)+90\left(x-70\right)
Factor out x in the first and 90 in the second group.
\left(x-70\right)\left(x+90\right)
Factor out common term x-70 by using distributive property.
x=70 x=-90
To find equation solutions, solve x-70=0 and x+90=0.
6300=20x+x^{2}
Multiply both sides of the equation by 20.
20x+x^{2}=6300
Swap sides so that all variable terms are on the left hand side.
20x+x^{2}-6300=0
Subtract 6300 from both sides.
x^{2}+20x-6300=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{20^{2}-4\left(-6300\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 20 for b, and -6300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\left(-6300\right)}}{2}
Square 20.
x=\frac{-20±\sqrt{400+25200}}{2}
Multiply -4 times -6300.
x=\frac{-20±\sqrt{25600}}{2}
Add 400 to 25200.
x=\frac{-20±160}{2}
Take the square root of 25600.
x=\frac{140}{2}
Now solve the equation x=\frac{-20±160}{2} when ± is plus. Add -20 to 160.
x=70
Divide 140 by 2.
x=-\frac{180}{2}
Now solve the equation x=\frac{-20±160}{2} when ± is minus. Subtract 160 from -20.
x=-90
Divide -180 by 2.
x=70 x=-90
The equation is now solved.
6300=20x+x^{2}
Multiply both sides of the equation by 20.
20x+x^{2}=6300
Swap sides so that all variable terms are on the left hand side.
x^{2}+20x=6300
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+20x+10^{2}=6300+10^{2}
Divide 20, the coefficient of the x term, by 2 to get 10. Then add the square of 10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+20x+100=6300+100
Square 10.
x^{2}+20x+100=6400
Add 6300 to 100.
\left(x+10\right)^{2}=6400
Factor x^{2}+20x+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+10\right)^{2}}=\sqrt{6400}
Take the square root of both sides of the equation.
x+10=80 x+10=-80
Simplify.
x=70 x=-90
Subtract 10 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}