315 \%
Evaluate
\frac{63}{20}=3.15
Factor
\frac{3 ^ {2} \cdot 7}{2 ^ {2} \cdot 5} = 3\frac{3}{20} = 3.15
Share
Copied to clipboard
\begin{array}{l}\phantom{100)}\phantom{1}\\100\overline{)315}\\\end{array}
Use the 1^{st} digit 3 from dividend 315
\begin{array}{l}\phantom{100)}0\phantom{2}\\100\overline{)315}\\\end{array}
Since 3 is less than 100, use the next digit 1 from dividend 315 and add 0 to the quotient
\begin{array}{l}\phantom{100)}0\phantom{3}\\100\overline{)315}\\\end{array}
Use the 2^{nd} digit 1 from dividend 315
\begin{array}{l}\phantom{100)}00\phantom{4}\\100\overline{)315}\\\end{array}
Since 31 is less than 100, use the next digit 5 from dividend 315 and add 0 to the quotient
\begin{array}{l}\phantom{100)}00\phantom{5}\\100\overline{)315}\\\end{array}
Use the 3^{rd} digit 5 from dividend 315
\begin{array}{l}\phantom{100)}003\phantom{6}\\100\overline{)315}\\\phantom{100)}\underline{\phantom{}300\phantom{}}\\\phantom{100)9}15\\\end{array}
Find closest multiple of 100 to 315. We see that 3 \times 100 = 300 is the nearest. Now subtract 300 from 315 to get reminder 15. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }15
Since 15 is less than 100, stop the division. The reminder is 15. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}