3140 \times (1+x) \times 0.9 \times (700 \times (1-1.3x)+210)=3140 \times 700 \times (1+12.86 \% )
Solve for x
x=\frac{\sqrt{598}}{130}\approx 0.188107989
x=-\frac{\sqrt{598}}{130}\approx -0.188107989
Graph
Share
Copied to clipboard
\left(1+x\right)\times 0.9\left(700\left(1-1.3x\right)+210\right)=700\left(1+\frac{12.86}{100}\right)
Cancel out 3140 on both sides.
\left(1+x\right)\times 0.9\left(700-910x+210\right)=700\left(1+\frac{12.86}{100}\right)
Use the distributive property to multiply 700 by 1-1.3x.
\left(1+x\right)\times 0.9\left(910-910x\right)=700\left(1+\frac{12.86}{100}\right)
Add 700 and 210 to get 910.
\left(0.9+0.9x\right)\left(910-910x\right)=700\left(1+\frac{12.86}{100}\right)
Use the distributive property to multiply 1+x by 0.9.
819-819x+819x-819x^{2}=700\left(1+\frac{12.86}{100}\right)
Apply the distributive property by multiplying each term of 0.9+0.9x by each term of 910-910x.
819-819x^{2}=700\left(1+\frac{12.86}{100}\right)
Combine -819x and 819x to get 0.
819-819x^{2}=700\left(1+\frac{1286}{10000}\right)
Expand \frac{12.86}{100} by multiplying both numerator and the denominator by 100.
819-819x^{2}=700\left(1+\frac{643}{5000}\right)
Reduce the fraction \frac{1286}{10000} to lowest terms by extracting and canceling out 2.
819-819x^{2}=700\left(\frac{5000}{5000}+\frac{643}{5000}\right)
Convert 1 to fraction \frac{5000}{5000}.
819-819x^{2}=700\times \frac{5000+643}{5000}
Since \frac{5000}{5000} and \frac{643}{5000} have the same denominator, add them by adding their numerators.
819-819x^{2}=700\times \frac{5643}{5000}
Add 5000 and 643 to get 5643.
819-819x^{2}=\frac{700\times 5643}{5000}
Express 700\times \frac{5643}{5000} as a single fraction.
819-819x^{2}=\frac{3950100}{5000}
Multiply 700 and 5643 to get 3950100.
819-819x^{2}=\frac{39501}{50}
Reduce the fraction \frac{3950100}{5000} to lowest terms by extracting and canceling out 100.
-819x^{2}=\frac{39501}{50}-819
Subtract 819 from both sides.
-819x^{2}=\frac{39501}{50}-\frac{40950}{50}
Convert 819 to fraction \frac{40950}{50}.
-819x^{2}=\frac{39501-40950}{50}
Since \frac{39501}{50} and \frac{40950}{50} have the same denominator, subtract them by subtracting their numerators.
-819x^{2}=-\frac{1449}{50}
Subtract 40950 from 39501 to get -1449.
x^{2}=\frac{-\frac{1449}{50}}{-819}
Divide both sides by -819.
x^{2}=\frac{-1449}{50\left(-819\right)}
Express \frac{-\frac{1449}{50}}{-819} as a single fraction.
x^{2}=\frac{-1449}{-40950}
Multiply 50 and -819 to get -40950.
x^{2}=\frac{23}{650}
Reduce the fraction \frac{-1449}{-40950} to lowest terms by extracting and canceling out -63.
x=\frac{\sqrt{598}}{130} x=-\frac{\sqrt{598}}{130}
Take the square root of both sides of the equation.
\left(1+x\right)\times 0.9\left(700\left(1-1.3x\right)+210\right)=700\left(1+\frac{12.86}{100}\right)
Cancel out 3140 on both sides.
\left(1+x\right)\times 0.9\left(700-910x+210\right)=700\left(1+\frac{12.86}{100}\right)
Use the distributive property to multiply 700 by 1-1.3x.
\left(1+x\right)\times 0.9\left(910-910x\right)=700\left(1+\frac{12.86}{100}\right)
Add 700 and 210 to get 910.
\left(0.9+0.9x\right)\left(910-910x\right)=700\left(1+\frac{12.86}{100}\right)
Use the distributive property to multiply 1+x by 0.9.
819-819x+819x-819x^{2}=700\left(1+\frac{12.86}{100}\right)
Apply the distributive property by multiplying each term of 0.9+0.9x by each term of 910-910x.
819-819x^{2}=700\left(1+\frac{12.86}{100}\right)
Combine -819x and 819x to get 0.
819-819x^{2}=700\left(1+\frac{1286}{10000}\right)
Expand \frac{12.86}{100} by multiplying both numerator and the denominator by 100.
819-819x^{2}=700\left(1+\frac{643}{5000}\right)
Reduce the fraction \frac{1286}{10000} to lowest terms by extracting and canceling out 2.
819-819x^{2}=700\left(\frac{5000}{5000}+\frac{643}{5000}\right)
Convert 1 to fraction \frac{5000}{5000}.
819-819x^{2}=700\times \frac{5000+643}{5000}
Since \frac{5000}{5000} and \frac{643}{5000} have the same denominator, add them by adding their numerators.
819-819x^{2}=700\times \frac{5643}{5000}
Add 5000 and 643 to get 5643.
819-819x^{2}=\frac{700\times 5643}{5000}
Express 700\times \frac{5643}{5000} as a single fraction.
819-819x^{2}=\frac{3950100}{5000}
Multiply 700 and 5643 to get 3950100.
819-819x^{2}=\frac{39501}{50}
Reduce the fraction \frac{3950100}{5000} to lowest terms by extracting and canceling out 100.
819-819x^{2}-\frac{39501}{50}=0
Subtract \frac{39501}{50} from both sides.
\frac{40950}{50}-819x^{2}-\frac{39501}{50}=0
Convert 819 to fraction \frac{40950}{50}.
\frac{40950-39501}{50}-819x^{2}=0
Since \frac{40950}{50} and \frac{39501}{50} have the same denominator, subtract them by subtracting their numerators.
\frac{1449}{50}-819x^{2}=0
Subtract 39501 from 40950 to get 1449.
-819x^{2}+\frac{1449}{50}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-819\right)\times \frac{1449}{50}}}{2\left(-819\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -819 for a, 0 for b, and \frac{1449}{50} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-819\right)\times \frac{1449}{50}}}{2\left(-819\right)}
Square 0.
x=\frac{0±\sqrt{3276\times \frac{1449}{50}}}{2\left(-819\right)}
Multiply -4 times -819.
x=\frac{0±\sqrt{\frac{2373462}{25}}}{2\left(-819\right)}
Multiply 3276 times \frac{1449}{50}.
x=\frac{0±\frac{63\sqrt{598}}{5}}{2\left(-819\right)}
Take the square root of \frac{2373462}{25}.
x=\frac{0±\frac{63\sqrt{598}}{5}}{-1638}
Multiply 2 times -819.
x=-\frac{\sqrt{598}}{130}
Now solve the equation x=\frac{0±\frac{63\sqrt{598}}{5}}{-1638} when ± is plus.
x=\frac{\sqrt{598}}{130}
Now solve the equation x=\frac{0±\frac{63\sqrt{598}}{5}}{-1638} when ± is minus.
x=-\frac{\sqrt{598}}{130} x=\frac{\sqrt{598}}{130}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}