Evaluate
-\frac{5\sqrt{3}}{64}+11775\approx 11774.864683531
Factor
\frac{5 {(150720 - \sqrt{3})}}{64} = 11774.864683530659
Share
Copied to clipboard
\frac{4710\times 15\times 60}{360}-225\times \frac{\sqrt{3}}{4}\times \frac{1}{720}
Multiply 314 and 15 to get 4710.
\frac{70650\times 60}{360}-225\times \frac{\sqrt{3}}{4}\times \frac{1}{720}
Multiply 4710 and 15 to get 70650.
\frac{4239000}{360}-225\times \frac{\sqrt{3}}{4}\times \frac{1}{720}
Multiply 70650 and 60 to get 4239000.
11775-225\times \frac{\sqrt{3}}{4}\times \frac{1}{720}
Divide 4239000 by 360 to get 11775.
11775-\frac{225}{720}\times \frac{\sqrt{3}}{4}
Multiply 225 and \frac{1}{720} to get \frac{225}{720}.
11775-\frac{5}{16}\times \frac{\sqrt{3}}{4}
Reduce the fraction \frac{225}{720} to lowest terms by extracting and canceling out 45.
11775-\frac{5\sqrt{3}}{16\times 4}
Multiply \frac{5}{16} times \frac{\sqrt{3}}{4} by multiplying numerator times numerator and denominator times denominator.
11775-\frac{5\sqrt{3}}{64}
Multiply 16 and 4 to get 64.
\frac{11775\times 64}{64}-\frac{5\sqrt{3}}{64}
To add or subtract expressions, expand them to make their denominators the same. Multiply 11775 times \frac{64}{64}.
\frac{11775\times 64-5\sqrt{3}}{64}
Since \frac{11775\times 64}{64} and \frac{5\sqrt{3}}{64} have the same denominator, subtract them by subtracting their numerators.
\frac{753600-5\sqrt{3}}{64}
Do the multiplications in 11775\times 64-5\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}