Solve for x
x=-\frac{\sqrt{2}y}{52}+\frac{731}{312}
Solve for y
y=-\frac{\sqrt{2}\left(312x-731\right)}{12}
Graph
Share
Copied to clipboard
312x+6\sqrt{2}y=731
Factor 72=6^{2}\times 2. Rewrite the square root of the product \sqrt{6^{2}\times 2} as the product of square roots \sqrt{6^{2}}\sqrt{2}. Take the square root of 6^{2}.
312x=731-6\sqrt{2}y
Subtract 6\sqrt{2}y from both sides.
312x=-6\sqrt{2}y+731
The equation is in standard form.
\frac{312x}{312}=\frac{-6\sqrt{2}y+731}{312}
Divide both sides by 312.
x=\frac{-6\sqrt{2}y+731}{312}
Dividing by 312 undoes the multiplication by 312.
x=-\frac{\sqrt{2}y}{52}+\frac{731}{312}
Divide 731-6\sqrt{2}y by 312.
312x+6\sqrt{2}y=731
Factor 72=6^{2}\times 2. Rewrite the square root of the product \sqrt{6^{2}\times 2} as the product of square roots \sqrt{6^{2}}\sqrt{2}. Take the square root of 6^{2}.
6\sqrt{2}y=731-312x
Subtract 312x from both sides.
\frac{6\sqrt{2}y}{6\sqrt{2}}=\frac{731-312x}{6\sqrt{2}}
Divide both sides by 6\sqrt{2}.
y=\frac{731-312x}{6\sqrt{2}}
Dividing by 6\sqrt{2} undoes the multiplication by 6\sqrt{2}.
y=\frac{\sqrt{2}\left(731-312x\right)}{12}
Divide 731-312x by 6\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}