Evaluate
\frac{25}{4}=6.25
Factor
\frac{5 ^ {2}}{2 ^ {2}} = 6\frac{1}{4} = 6.25
Share
Copied to clipboard
\begin{array}{l}\phantom{500)}\phantom{1}\\500\overline{)3125}\\\end{array}
Use the 1^{st} digit 3 from dividend 3125
\begin{array}{l}\phantom{500)}0\phantom{2}\\500\overline{)3125}\\\end{array}
Since 3 is less than 500, use the next digit 1 from dividend 3125 and add 0 to the quotient
\begin{array}{l}\phantom{500)}0\phantom{3}\\500\overline{)3125}\\\end{array}
Use the 2^{nd} digit 1 from dividend 3125
\begin{array}{l}\phantom{500)}00\phantom{4}\\500\overline{)3125}\\\end{array}
Since 31 is less than 500, use the next digit 2 from dividend 3125 and add 0 to the quotient
\begin{array}{l}\phantom{500)}00\phantom{5}\\500\overline{)3125}\\\end{array}
Use the 3^{rd} digit 2 from dividend 3125
\begin{array}{l}\phantom{500)}000\phantom{6}\\500\overline{)3125}\\\end{array}
Since 312 is less than 500, use the next digit 5 from dividend 3125 and add 0 to the quotient
\begin{array}{l}\phantom{500)}000\phantom{7}\\500\overline{)3125}\\\end{array}
Use the 4^{th} digit 5 from dividend 3125
\begin{array}{l}\phantom{500)}0006\phantom{8}\\500\overline{)3125}\\\phantom{500)}\underline{\phantom{}3000\phantom{}}\\\phantom{500)9}125\\\end{array}
Find closest multiple of 500 to 3125. We see that 6 \times 500 = 3000 is the nearest. Now subtract 3000 from 3125 to get reminder 125. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }125
Since 125 is less than 500, stop the division. The reminder is 125. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}