Evaluate
12
Factor
2^{2}\times 3
Share
Copied to clipboard
\begin{array}{l}\phantom{26)}\phantom{1}\\26\overline{)312}\\\end{array}
Use the 1^{st} digit 3 from dividend 312
\begin{array}{l}\phantom{26)}0\phantom{2}\\26\overline{)312}\\\end{array}
Since 3 is less than 26, use the next digit 1 from dividend 312 and add 0 to the quotient
\begin{array}{l}\phantom{26)}0\phantom{3}\\26\overline{)312}\\\end{array}
Use the 2^{nd} digit 1 from dividend 312
\begin{array}{l}\phantom{26)}01\phantom{4}\\26\overline{)312}\\\phantom{26)}\underline{\phantom{}26\phantom{9}}\\\phantom{26)9}5\\\end{array}
Find closest multiple of 26 to 31. We see that 1 \times 26 = 26 is the nearest. Now subtract 26 from 31 to get reminder 5. Add 1 to quotient.
\begin{array}{l}\phantom{26)}01\phantom{5}\\26\overline{)312}\\\phantom{26)}\underline{\phantom{}26\phantom{9}}\\\phantom{26)9}52\\\end{array}
Use the 3^{rd} digit 2 from dividend 312
\begin{array}{l}\phantom{26)}012\phantom{6}\\26\overline{)312}\\\phantom{26)}\underline{\phantom{}26\phantom{9}}\\\phantom{26)9}52\\\phantom{26)}\underline{\phantom{9}52\phantom{}}\\\phantom{26)999}0\\\end{array}
Find closest multiple of 26 to 52. We see that 2 \times 26 = 52 is the nearest. Now subtract 52 from 52 to get reminder 0. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }0
Since 0 is less than 26, stop the division. The reminder is 0. The topmost line 012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}