Evaluate
\frac{155}{6}\approx 25.833333333
Factor
\frac{5 \cdot 31}{2 \cdot 3} = 25\frac{5}{6} = 25.833333333333332
Share
Copied to clipboard
\begin{array}{l}\phantom{120)}\phantom{1}\\120\overline{)3100}\\\end{array}
Use the 1^{st} digit 3 from dividend 3100
\begin{array}{l}\phantom{120)}0\phantom{2}\\120\overline{)3100}\\\end{array}
Since 3 is less than 120, use the next digit 1 from dividend 3100 and add 0 to the quotient
\begin{array}{l}\phantom{120)}0\phantom{3}\\120\overline{)3100}\\\end{array}
Use the 2^{nd} digit 1 from dividend 3100
\begin{array}{l}\phantom{120)}00\phantom{4}\\120\overline{)3100}\\\end{array}
Since 31 is less than 120, use the next digit 0 from dividend 3100 and add 0 to the quotient
\begin{array}{l}\phantom{120)}00\phantom{5}\\120\overline{)3100}\\\end{array}
Use the 3^{rd} digit 0 from dividend 3100
\begin{array}{l}\phantom{120)}002\phantom{6}\\120\overline{)3100}\\\phantom{120)}\underline{\phantom{}240\phantom{9}}\\\phantom{120)9}70\\\end{array}
Find closest multiple of 120 to 310. We see that 2 \times 120 = 240 is the nearest. Now subtract 240 from 310 to get reminder 70. Add 2 to quotient.
\begin{array}{l}\phantom{120)}002\phantom{7}\\120\overline{)3100}\\\phantom{120)}\underline{\phantom{}240\phantom{9}}\\\phantom{120)9}700\\\end{array}
Use the 4^{th} digit 0 from dividend 3100
\begin{array}{l}\phantom{120)}0025\phantom{8}\\120\overline{)3100}\\\phantom{120)}\underline{\phantom{}240\phantom{9}}\\\phantom{120)9}700\\\phantom{120)}\underline{\phantom{9}600\phantom{}}\\\phantom{120)9}100\\\end{array}
Find closest multiple of 120 to 700. We see that 5 \times 120 = 600 is the nearest. Now subtract 600 from 700 to get reminder 100. Add 5 to quotient.
\text{Quotient: }25 \text{Reminder: }100
Since 100 is less than 120, stop the division. The reminder is 100. The topmost line 0025 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}