Solve for x
x=5\sqrt{1963}+235\approx 456.528779169
x=235-5\sqrt{1963}\approx 13.471220831
Graph
Share
Copied to clipboard
3100=940x-2x^{2}-9200
Use the distributive property to multiply x-10 by 920-2x and combine like terms.
940x-2x^{2}-9200=3100
Swap sides so that all variable terms are on the left hand side.
940x-2x^{2}-9200-3100=0
Subtract 3100 from both sides.
940x-2x^{2}-12300=0
Subtract 3100 from -9200 to get -12300.
-2x^{2}+940x-12300=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-940±\sqrt{940^{2}-4\left(-2\right)\left(-12300\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 940 for b, and -12300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-940±\sqrt{883600-4\left(-2\right)\left(-12300\right)}}{2\left(-2\right)}
Square 940.
x=\frac{-940±\sqrt{883600+8\left(-12300\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-940±\sqrt{883600-98400}}{2\left(-2\right)}
Multiply 8 times -12300.
x=\frac{-940±\sqrt{785200}}{2\left(-2\right)}
Add 883600 to -98400.
x=\frac{-940±20\sqrt{1963}}{2\left(-2\right)}
Take the square root of 785200.
x=\frac{-940±20\sqrt{1963}}{-4}
Multiply 2 times -2.
x=\frac{20\sqrt{1963}-940}{-4}
Now solve the equation x=\frac{-940±20\sqrt{1963}}{-4} when ± is plus. Add -940 to 20\sqrt{1963}.
x=235-5\sqrt{1963}
Divide -940+20\sqrt{1963} by -4.
x=\frac{-20\sqrt{1963}-940}{-4}
Now solve the equation x=\frac{-940±20\sqrt{1963}}{-4} when ± is minus. Subtract 20\sqrt{1963} from -940.
x=5\sqrt{1963}+235
Divide -940-20\sqrt{1963} by -4.
x=235-5\sqrt{1963} x=5\sqrt{1963}+235
The equation is now solved.
3100=940x-2x^{2}-9200
Use the distributive property to multiply x-10 by 920-2x and combine like terms.
940x-2x^{2}-9200=3100
Swap sides so that all variable terms are on the left hand side.
940x-2x^{2}=3100+9200
Add 9200 to both sides.
940x-2x^{2}=12300
Add 3100 and 9200 to get 12300.
-2x^{2}+940x=12300
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+940x}{-2}=\frac{12300}{-2}
Divide both sides by -2.
x^{2}+\frac{940}{-2}x=\frac{12300}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-470x=\frac{12300}{-2}
Divide 940 by -2.
x^{2}-470x=-6150
Divide 12300 by -2.
x^{2}-470x+\left(-235\right)^{2}=-6150+\left(-235\right)^{2}
Divide -470, the coefficient of the x term, by 2 to get -235. Then add the square of -235 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-470x+55225=-6150+55225
Square -235.
x^{2}-470x+55225=49075
Add -6150 to 55225.
\left(x-235\right)^{2}=49075
Factor x^{2}-470x+55225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-235\right)^{2}}=\sqrt{49075}
Take the square root of both sides of the equation.
x-235=5\sqrt{1963} x-235=-5\sqrt{1963}
Simplify.
x=5\sqrt{1963}+235 x=235-5\sqrt{1963}
Add 235 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}