Solve for y
y=-5
y=\frac{4}{7}\approx 0.571428571
Graph
Share
Copied to clipboard
31y+7y^{2}-20=0
Subtract 20 from both sides.
7y^{2}+31y-20=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=31 ab=7\left(-20\right)=-140
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 7y^{2}+ay+by-20. To find a and b, set up a system to be solved.
-1,140 -2,70 -4,35 -5,28 -7,20 -10,14
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -140.
-1+140=139 -2+70=68 -4+35=31 -5+28=23 -7+20=13 -10+14=4
Calculate the sum for each pair.
a=-4 b=35
The solution is the pair that gives sum 31.
\left(7y^{2}-4y\right)+\left(35y-20\right)
Rewrite 7y^{2}+31y-20 as \left(7y^{2}-4y\right)+\left(35y-20\right).
y\left(7y-4\right)+5\left(7y-4\right)
Factor out y in the first and 5 in the second group.
\left(7y-4\right)\left(y+5\right)
Factor out common term 7y-4 by using distributive property.
y=\frac{4}{7} y=-5
To find equation solutions, solve 7y-4=0 and y+5=0.
7y^{2}+31y=20
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
7y^{2}+31y-20=20-20
Subtract 20 from both sides of the equation.
7y^{2}+31y-20=0
Subtracting 20 from itself leaves 0.
y=\frac{-31±\sqrt{31^{2}-4\times 7\left(-20\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 31 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-31±\sqrt{961-4\times 7\left(-20\right)}}{2\times 7}
Square 31.
y=\frac{-31±\sqrt{961-28\left(-20\right)}}{2\times 7}
Multiply -4 times 7.
y=\frac{-31±\sqrt{961+560}}{2\times 7}
Multiply -28 times -20.
y=\frac{-31±\sqrt{1521}}{2\times 7}
Add 961 to 560.
y=\frac{-31±39}{2\times 7}
Take the square root of 1521.
y=\frac{-31±39}{14}
Multiply 2 times 7.
y=\frac{8}{14}
Now solve the equation y=\frac{-31±39}{14} when ± is plus. Add -31 to 39.
y=\frac{4}{7}
Reduce the fraction \frac{8}{14} to lowest terms by extracting and canceling out 2.
y=-\frac{70}{14}
Now solve the equation y=\frac{-31±39}{14} when ± is minus. Subtract 39 from -31.
y=-5
Divide -70 by 14.
y=\frac{4}{7} y=-5
The equation is now solved.
7y^{2}+31y=20
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{7y^{2}+31y}{7}=\frac{20}{7}
Divide both sides by 7.
y^{2}+\frac{31}{7}y=\frac{20}{7}
Dividing by 7 undoes the multiplication by 7.
y^{2}+\frac{31}{7}y+\left(\frac{31}{14}\right)^{2}=\frac{20}{7}+\left(\frac{31}{14}\right)^{2}
Divide \frac{31}{7}, the coefficient of the x term, by 2 to get \frac{31}{14}. Then add the square of \frac{31}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{31}{7}y+\frac{961}{196}=\frac{20}{7}+\frac{961}{196}
Square \frac{31}{14} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{31}{7}y+\frac{961}{196}=\frac{1521}{196}
Add \frac{20}{7} to \frac{961}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{31}{14}\right)^{2}=\frac{1521}{196}
Factor y^{2}+\frac{31}{7}y+\frac{961}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{31}{14}\right)^{2}}=\sqrt{\frac{1521}{196}}
Take the square root of both sides of the equation.
y+\frac{31}{14}=\frac{39}{14} y+\frac{31}{14}=-\frac{39}{14}
Simplify.
y=\frac{4}{7} y=-5
Subtract \frac{31}{14} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}