Skip to main content
Solve for p
Tick mark Image

Similar Problems from Web Search

Share

p\left(31p-37\right)=0
Factor out p.
p=0 p=\frac{37}{31}
To find equation solutions, solve p=0 and 31p-37=0.
31p^{2}-37p=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-\left(-37\right)±\sqrt{\left(-37\right)^{2}}}{2\times 31}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 31 for a, -37 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-37\right)±37}{2\times 31}
Take the square root of \left(-37\right)^{2}.
p=\frac{37±37}{2\times 31}
The opposite of -37 is 37.
p=\frac{37±37}{62}
Multiply 2 times 31.
p=\frac{74}{62}
Now solve the equation p=\frac{37±37}{62} when ± is plus. Add 37 to 37.
p=\frac{37}{31}
Reduce the fraction \frac{74}{62} to lowest terms by extracting and canceling out 2.
p=\frac{0}{62}
Now solve the equation p=\frac{37±37}{62} when ± is minus. Subtract 37 from 37.
p=0
Divide 0 by 62.
p=\frac{37}{31} p=0
The equation is now solved.
31p^{2}-37p=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{31p^{2}-37p}{31}=\frac{0}{31}
Divide both sides by 31.
p^{2}-\frac{37}{31}p=\frac{0}{31}
Dividing by 31 undoes the multiplication by 31.
p^{2}-\frac{37}{31}p=0
Divide 0 by 31.
p^{2}-\frac{37}{31}p+\left(-\frac{37}{62}\right)^{2}=\left(-\frac{37}{62}\right)^{2}
Divide -\frac{37}{31}, the coefficient of the x term, by 2 to get -\frac{37}{62}. Then add the square of -\frac{37}{62} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}-\frac{37}{31}p+\frac{1369}{3844}=\frac{1369}{3844}
Square -\frac{37}{62} by squaring both the numerator and the denominator of the fraction.
\left(p-\frac{37}{62}\right)^{2}=\frac{1369}{3844}
Factor p^{2}-\frac{37}{31}p+\frac{1369}{3844}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{37}{62}\right)^{2}}=\sqrt{\frac{1369}{3844}}
Take the square root of both sides of the equation.
p-\frac{37}{62}=\frac{37}{62} p-\frac{37}{62}=-\frac{37}{62}
Simplify.
p=\frac{37}{31} p=0
Add \frac{37}{62} to both sides of the equation.