Evaluate
-\frac{31}{10}=-3.1
Factor
-\frac{31}{10} = -3\frac{1}{10} = -3.1
Share
Copied to clipboard
31\left(-\frac{6}{5}+\frac{1}{3}\right)\times \frac{3}{26}
Fraction \frac{-6}{5} can be rewritten as -\frac{6}{5} by extracting the negative sign.
31\left(-\frac{18}{15}+\frac{5}{15}\right)\times \frac{3}{26}
Least common multiple of 5 and 3 is 15. Convert -\frac{6}{5} and \frac{1}{3} to fractions with denominator 15.
31\times \frac{-18+5}{15}\times \frac{3}{26}
Since -\frac{18}{15} and \frac{5}{15} have the same denominator, add them by adding their numerators.
31\left(-\frac{13}{15}\right)\times \frac{3}{26}
Add -18 and 5 to get -13.
\frac{31\left(-13\right)}{15}\times \frac{3}{26}
Express 31\left(-\frac{13}{15}\right) as a single fraction.
\frac{-403}{15}\times \frac{3}{26}
Multiply 31 and -13 to get -403.
-\frac{403}{15}\times \frac{3}{26}
Fraction \frac{-403}{15} can be rewritten as -\frac{403}{15} by extracting the negative sign.
\frac{-403\times 3}{15\times 26}
Multiply -\frac{403}{15} times \frac{3}{26} by multiplying numerator times numerator and denominator times denominator.
\frac{-1209}{390}
Do the multiplications in the fraction \frac{-403\times 3}{15\times 26}.
-\frac{31}{10}
Reduce the fraction \frac{-1209}{390} to lowest terms by extracting and canceling out 39.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}