Solve for x
x=1
x=5
Graph
Share
Copied to clipboard
6x-x^{2}-5=0
Divide both sides by 5.
-x^{2}+6x-5=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=6 ab=-\left(-5\right)=5
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-5. To find a and b, set up a system to be solved.
a=5 b=1
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. The only such pair is the system solution.
\left(-x^{2}+5x\right)+\left(x-5\right)
Rewrite -x^{2}+6x-5 as \left(-x^{2}+5x\right)+\left(x-5\right).
-x\left(x-5\right)+x-5
Factor out -x in -x^{2}+5x.
\left(x-5\right)\left(-x+1\right)
Factor out common term x-5 by using distributive property.
x=5 x=1
To find equation solutions, solve x-5=0 and -x+1=0.
-5x^{2}+30x-25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-30±\sqrt{30^{2}-4\left(-5\right)\left(-25\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 30 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\left(-5\right)\left(-25\right)}}{2\left(-5\right)}
Square 30.
x=\frac{-30±\sqrt{900+20\left(-25\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-30±\sqrt{900-500}}{2\left(-5\right)}
Multiply 20 times -25.
x=\frac{-30±\sqrt{400}}{2\left(-5\right)}
Add 900 to -500.
x=\frac{-30±20}{2\left(-5\right)}
Take the square root of 400.
x=\frac{-30±20}{-10}
Multiply 2 times -5.
x=-\frac{10}{-10}
Now solve the equation x=\frac{-30±20}{-10} when ± is plus. Add -30 to 20.
x=1
Divide -10 by -10.
x=-\frac{50}{-10}
Now solve the equation x=\frac{-30±20}{-10} when ± is minus. Subtract 20 from -30.
x=5
Divide -50 by -10.
x=1 x=5
The equation is now solved.
-5x^{2}+30x-25=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-5x^{2}+30x-25-\left(-25\right)=-\left(-25\right)
Add 25 to both sides of the equation.
-5x^{2}+30x=-\left(-25\right)
Subtracting -25 from itself leaves 0.
-5x^{2}+30x=25
Subtract -25 from 0.
\frac{-5x^{2}+30x}{-5}=\frac{25}{-5}
Divide both sides by -5.
x^{2}+\frac{30}{-5}x=\frac{25}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-6x=\frac{25}{-5}
Divide 30 by -5.
x^{2}-6x=-5
Divide 25 by -5.
x^{2}-6x+\left(-3\right)^{2}=-5+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-5+9
Square -3.
x^{2}-6x+9=4
Add -5 to 9.
\left(x-3\right)^{2}=4
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x-3=2 x-3=-2
Simplify.
x=5 x=1
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}