Solve for x
x=\frac{1}{9}\approx 0.111111111
x=\frac{1}{25}=0.04
Graph
Share
Copied to clipboard
30x-16\sqrt{x}=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
-16\sqrt{x}=-2-30x
Subtract 30x from both sides of the equation.
\left(-16\sqrt{x}\right)^{2}=\left(-2-30x\right)^{2}
Square both sides of the equation.
\left(-16\right)^{2}\left(\sqrt{x}\right)^{2}=\left(-2-30x\right)^{2}
Expand \left(-16\sqrt{x}\right)^{2}.
256\left(\sqrt{x}\right)^{2}=\left(-2-30x\right)^{2}
Calculate -16 to the power of 2 and get 256.
256x=\left(-2-30x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
256x=4+120x+900x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2-30x\right)^{2}.
256x-120x=4+900x^{2}
Subtract 120x from both sides.
136x=4+900x^{2}
Combine 256x and -120x to get 136x.
136x-900x^{2}=4
Subtract 900x^{2} from both sides.
-900x^{2}+136x=4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-900x^{2}+136x-4=4-4
Subtract 4 from both sides of the equation.
-900x^{2}+136x-4=0
Subtracting 4 from itself leaves 0.
x=\frac{-136±\sqrt{136^{2}-4\left(-900\right)\left(-4\right)}}{2\left(-900\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -900 for a, 136 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-136±\sqrt{18496-4\left(-900\right)\left(-4\right)}}{2\left(-900\right)}
Square 136.
x=\frac{-136±\sqrt{18496+3600\left(-4\right)}}{2\left(-900\right)}
Multiply -4 times -900.
x=\frac{-136±\sqrt{18496-14400}}{2\left(-900\right)}
Multiply 3600 times -4.
x=\frac{-136±\sqrt{4096}}{2\left(-900\right)}
Add 18496 to -14400.
x=\frac{-136±64}{2\left(-900\right)}
Take the square root of 4096.
x=\frac{-136±64}{-1800}
Multiply 2 times -900.
x=-\frac{72}{-1800}
Now solve the equation x=\frac{-136±64}{-1800} when ± is plus. Add -136 to 64.
x=\frac{1}{25}
Reduce the fraction \frac{-72}{-1800} to lowest terms by extracting and canceling out 72.
x=-\frac{200}{-1800}
Now solve the equation x=\frac{-136±64}{-1800} when ± is minus. Subtract 64 from -136.
x=\frac{1}{9}
Reduce the fraction \frac{-200}{-1800} to lowest terms by extracting and canceling out 200.
x=\frac{1}{25} x=\frac{1}{9}
The equation is now solved.
30\times \frac{1}{25}-16\sqrt{\frac{1}{25}}+2=0
Substitute \frac{1}{25} for x in the equation 30x-16\sqrt{x}+2=0.
0=0
Simplify. The value x=\frac{1}{25} satisfies the equation.
30\times \frac{1}{9}-16\sqrt{\frac{1}{9}}+2=0
Substitute \frac{1}{9} for x in the equation 30x-16\sqrt{x}+2=0.
0=0
Simplify. The value x=\frac{1}{9} satisfies the equation.
x=\frac{1}{25} x=\frac{1}{9}
List all solutions of -16\sqrt{x}=-30x-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}