Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

30x-16\sqrt{x}=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
-16\sqrt{x}=-2-30x
Subtract 30x from both sides of the equation.
\left(-16\sqrt{x}\right)^{2}=\left(-2-30x\right)^{2}
Square both sides of the equation.
\left(-16\right)^{2}\left(\sqrt{x}\right)^{2}=\left(-2-30x\right)^{2}
Expand \left(-16\sqrt{x}\right)^{2}.
256\left(\sqrt{x}\right)^{2}=\left(-2-30x\right)^{2}
Calculate -16 to the power of 2 and get 256.
256x=\left(-2-30x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
256x=4+120x+900x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2-30x\right)^{2}.
256x-120x=4+900x^{2}
Subtract 120x from both sides.
136x=4+900x^{2}
Combine 256x and -120x to get 136x.
136x-900x^{2}=4
Subtract 900x^{2} from both sides.
-900x^{2}+136x=4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-900x^{2}+136x-4=4-4
Subtract 4 from both sides of the equation.
-900x^{2}+136x-4=0
Subtracting 4 from itself leaves 0.
x=\frac{-136±\sqrt{136^{2}-4\left(-900\right)\left(-4\right)}}{2\left(-900\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -900 for a, 136 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-136±\sqrt{18496-4\left(-900\right)\left(-4\right)}}{2\left(-900\right)}
Square 136.
x=\frac{-136±\sqrt{18496+3600\left(-4\right)}}{2\left(-900\right)}
Multiply -4 times -900.
x=\frac{-136±\sqrt{18496-14400}}{2\left(-900\right)}
Multiply 3600 times -4.
x=\frac{-136±\sqrt{4096}}{2\left(-900\right)}
Add 18496 to -14400.
x=\frac{-136±64}{2\left(-900\right)}
Take the square root of 4096.
x=\frac{-136±64}{-1800}
Multiply 2 times -900.
x=-\frac{72}{-1800}
Now solve the equation x=\frac{-136±64}{-1800} when ± is plus. Add -136 to 64.
x=\frac{1}{25}
Reduce the fraction \frac{-72}{-1800} to lowest terms by extracting and canceling out 72.
x=-\frac{200}{-1800}
Now solve the equation x=\frac{-136±64}{-1800} when ± is minus. Subtract 64 from -136.
x=\frac{1}{9}
Reduce the fraction \frac{-200}{-1800} to lowest terms by extracting and canceling out 200.
x=\frac{1}{25} x=\frac{1}{9}
The equation is now solved.
30\times \frac{1}{25}-16\sqrt{\frac{1}{25}}+2=0
Substitute \frac{1}{25} for x in the equation 30x-16\sqrt{x}+2=0.
0=0
Simplify. The value x=\frac{1}{25} satisfies the equation.
30\times \frac{1}{9}-16\sqrt{\frac{1}{9}}+2=0
Substitute \frac{1}{9} for x in the equation 30x-16\sqrt{x}+2=0.
0=0
Simplify. The value x=\frac{1}{9} satisfies the equation.
x=\frac{1}{25} x=\frac{1}{9}
List all solutions of -16\sqrt{x}=-30x-2.