Evaluate
18
Factor
2\times 3^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{17)}\phantom{1}\\17\overline{)306}\\\end{array}
Use the 1^{st} digit 3 from dividend 306
\begin{array}{l}\phantom{17)}0\phantom{2}\\17\overline{)306}\\\end{array}
Since 3 is less than 17, use the next digit 0 from dividend 306 and add 0 to the quotient
\begin{array}{l}\phantom{17)}0\phantom{3}\\17\overline{)306}\\\end{array}
Use the 2^{nd} digit 0 from dividend 306
\begin{array}{l}\phantom{17)}01\phantom{4}\\17\overline{)306}\\\phantom{17)}\underline{\phantom{}17\phantom{9}}\\\phantom{17)}13\\\end{array}
Find closest multiple of 17 to 30. We see that 1 \times 17 = 17 is the nearest. Now subtract 17 from 30 to get reminder 13. Add 1 to quotient.
\begin{array}{l}\phantom{17)}01\phantom{5}\\17\overline{)306}\\\phantom{17)}\underline{\phantom{}17\phantom{9}}\\\phantom{17)}136\\\end{array}
Use the 3^{rd} digit 6 from dividend 306
\begin{array}{l}\phantom{17)}018\phantom{6}\\17\overline{)306}\\\phantom{17)}\underline{\phantom{}17\phantom{9}}\\\phantom{17)}136\\\phantom{17)}\underline{\phantom{}136\phantom{}}\\\phantom{17)999}0\\\end{array}
Find closest multiple of 17 to 136. We see that 8 \times 17 = 136 is the nearest. Now subtract 136 from 136 to get reminder 0. Add 8 to quotient.
\text{Quotient: }18 \text{Reminder: }0
Since 0 is less than 17, stop the division. The reminder is 0. The topmost line 018 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}