Evaluate
\frac{6075}{8}=759.375
Factor
\frac{3 ^ {5} \cdot 5 ^ {2}}{2 ^ {3}} = 759\frac{3}{8} = 759.375
Share
Copied to clipboard
\begin{array}{l}\phantom{40)}\phantom{1}\\40\overline{)30375}\\\end{array}
Use the 1^{st} digit 3 from dividend 30375
\begin{array}{l}\phantom{40)}0\phantom{2}\\40\overline{)30375}\\\end{array}
Since 3 is less than 40, use the next digit 0 from dividend 30375 and add 0 to the quotient
\begin{array}{l}\phantom{40)}0\phantom{3}\\40\overline{)30375}\\\end{array}
Use the 2^{nd} digit 0 from dividend 30375
\begin{array}{l}\phantom{40)}00\phantom{4}\\40\overline{)30375}\\\end{array}
Since 30 is less than 40, use the next digit 3 from dividend 30375 and add 0 to the quotient
\begin{array}{l}\phantom{40)}00\phantom{5}\\40\overline{)30375}\\\end{array}
Use the 3^{rd} digit 3 from dividend 30375
\begin{array}{l}\phantom{40)}007\phantom{6}\\40\overline{)30375}\\\phantom{40)}\underline{\phantom{}280\phantom{99}}\\\phantom{40)9}23\\\end{array}
Find closest multiple of 40 to 303. We see that 7 \times 40 = 280 is the nearest. Now subtract 280 from 303 to get reminder 23. Add 7 to quotient.
\begin{array}{l}\phantom{40)}007\phantom{7}\\40\overline{)30375}\\\phantom{40)}\underline{\phantom{}280\phantom{99}}\\\phantom{40)9}237\\\end{array}
Use the 4^{th} digit 7 from dividend 30375
\begin{array}{l}\phantom{40)}0075\phantom{8}\\40\overline{)30375}\\\phantom{40)}\underline{\phantom{}280\phantom{99}}\\\phantom{40)9}237\\\phantom{40)}\underline{\phantom{9}200\phantom{9}}\\\phantom{40)99}37\\\end{array}
Find closest multiple of 40 to 237. We see that 5 \times 40 = 200 is the nearest. Now subtract 200 from 237 to get reminder 37. Add 5 to quotient.
\begin{array}{l}\phantom{40)}0075\phantom{9}\\40\overline{)30375}\\\phantom{40)}\underline{\phantom{}280\phantom{99}}\\\phantom{40)9}237\\\phantom{40)}\underline{\phantom{9}200\phantom{9}}\\\phantom{40)99}375\\\end{array}
Use the 5^{th} digit 5 from dividend 30375
\begin{array}{l}\phantom{40)}00759\phantom{10}\\40\overline{)30375}\\\phantom{40)}\underline{\phantom{}280\phantom{99}}\\\phantom{40)9}237\\\phantom{40)}\underline{\phantom{9}200\phantom{9}}\\\phantom{40)99}375\\\phantom{40)}\underline{\phantom{99}360\phantom{}}\\\phantom{40)999}15\\\end{array}
Find closest multiple of 40 to 375. We see that 9 \times 40 = 360 is the nearest. Now subtract 360 from 375 to get reminder 15. Add 9 to quotient.
\text{Quotient: }759 \text{Reminder: }15
Since 15 is less than 40, stop the division. The reminder is 15. The topmost line 00759 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 759.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}