Evaluate
\frac{605}{72}\approx 8.402777778
Factor
\frac{5 \cdot 11 ^ {2}}{2 ^ {3} \cdot 3 ^ {2}} = 8\frac{29}{72} = 8.402777777777779
Share
Copied to clipboard
\begin{array}{l}\phantom{360)}\phantom{1}\\360\overline{)3025}\\\end{array}
Use the 1^{st} digit 3 from dividend 3025
\begin{array}{l}\phantom{360)}0\phantom{2}\\360\overline{)3025}\\\end{array}
Since 3 is less than 360, use the next digit 0 from dividend 3025 and add 0 to the quotient
\begin{array}{l}\phantom{360)}0\phantom{3}\\360\overline{)3025}\\\end{array}
Use the 2^{nd} digit 0 from dividend 3025
\begin{array}{l}\phantom{360)}00\phantom{4}\\360\overline{)3025}\\\end{array}
Since 30 is less than 360, use the next digit 2 from dividend 3025 and add 0 to the quotient
\begin{array}{l}\phantom{360)}00\phantom{5}\\360\overline{)3025}\\\end{array}
Use the 3^{rd} digit 2 from dividend 3025
\begin{array}{l}\phantom{360)}000\phantom{6}\\360\overline{)3025}\\\end{array}
Since 302 is less than 360, use the next digit 5 from dividend 3025 and add 0 to the quotient
\begin{array}{l}\phantom{360)}000\phantom{7}\\360\overline{)3025}\\\end{array}
Use the 4^{th} digit 5 from dividend 3025
\begin{array}{l}\phantom{360)}0008\phantom{8}\\360\overline{)3025}\\\phantom{360)}\underline{\phantom{}2880\phantom{}}\\\phantom{360)9}145\\\end{array}
Find closest multiple of 360 to 3025. We see that 8 \times 360 = 2880 is the nearest. Now subtract 2880 from 3025 to get reminder 145. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }145
Since 145 is less than 360, stop the division. The reminder is 145. The topmost line 0008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}