Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3010=6000+100x-20x^{2}
Use the distributive property to multiply 20-x by 300+20x and combine like terms.
6000+100x-20x^{2}=3010
Swap sides so that all variable terms are on the left hand side.
6000+100x-20x^{2}-3010=0
Subtract 3010 from both sides.
2990+100x-20x^{2}=0
Subtract 3010 from 6000 to get 2990.
-20x^{2}+100x+2990=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-100±\sqrt{100^{2}-4\left(-20\right)\times 2990}}{2\left(-20\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -20 for a, 100 for b, and 2990 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-100±\sqrt{10000-4\left(-20\right)\times 2990}}{2\left(-20\right)}
Square 100.
x=\frac{-100±\sqrt{10000+80\times 2990}}{2\left(-20\right)}
Multiply -4 times -20.
x=\frac{-100±\sqrt{10000+239200}}{2\left(-20\right)}
Multiply 80 times 2990.
x=\frac{-100±\sqrt{249200}}{2\left(-20\right)}
Add 10000 to 239200.
x=\frac{-100±20\sqrt{623}}{2\left(-20\right)}
Take the square root of 249200.
x=\frac{-100±20\sqrt{623}}{-40}
Multiply 2 times -20.
x=\frac{20\sqrt{623}-100}{-40}
Now solve the equation x=\frac{-100±20\sqrt{623}}{-40} when ± is plus. Add -100 to 20\sqrt{623}.
x=\frac{5-\sqrt{623}}{2}
Divide -100+20\sqrt{623} by -40.
x=\frac{-20\sqrt{623}-100}{-40}
Now solve the equation x=\frac{-100±20\sqrt{623}}{-40} when ± is minus. Subtract 20\sqrt{623} from -100.
x=\frac{\sqrt{623}+5}{2}
Divide -100-20\sqrt{623} by -40.
x=\frac{5-\sqrt{623}}{2} x=\frac{\sqrt{623}+5}{2}
The equation is now solved.
3010=6000+100x-20x^{2}
Use the distributive property to multiply 20-x by 300+20x and combine like terms.
6000+100x-20x^{2}=3010
Swap sides so that all variable terms are on the left hand side.
100x-20x^{2}=3010-6000
Subtract 6000 from both sides.
100x-20x^{2}=-2990
Subtract 6000 from 3010 to get -2990.
-20x^{2}+100x=-2990
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-20x^{2}+100x}{-20}=-\frac{2990}{-20}
Divide both sides by -20.
x^{2}+\frac{100}{-20}x=-\frac{2990}{-20}
Dividing by -20 undoes the multiplication by -20.
x^{2}-5x=-\frac{2990}{-20}
Divide 100 by -20.
x^{2}-5x=\frac{299}{2}
Reduce the fraction \frac{-2990}{-20} to lowest terms by extracting and canceling out 10.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\frac{299}{2}+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=\frac{299}{2}+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{623}{4}
Add \frac{299}{2} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{2}\right)^{2}=\frac{623}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{623}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{\sqrt{623}}{2} x-\frac{5}{2}=-\frac{\sqrt{623}}{2}
Simplify.
x=\frac{\sqrt{623}+5}{2} x=\frac{5-\sqrt{623}}{2}
Add \frac{5}{2} to both sides of the equation.