Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

301x^{2}-918x=256
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
301x^{2}-918x-256=256-256
Subtract 256 from both sides of the equation.
301x^{2}-918x-256=0
Subtracting 256 from itself leaves 0.
x=\frac{-\left(-918\right)±\sqrt{\left(-918\right)^{2}-4\times 301\left(-256\right)}}{2\times 301}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 301 for a, -918 for b, and -256 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-918\right)±\sqrt{842724-4\times 301\left(-256\right)}}{2\times 301}
Square -918.
x=\frac{-\left(-918\right)±\sqrt{842724-1204\left(-256\right)}}{2\times 301}
Multiply -4 times 301.
x=\frac{-\left(-918\right)±\sqrt{842724+308224}}{2\times 301}
Multiply -1204 times -256.
x=\frac{-\left(-918\right)±\sqrt{1150948}}{2\times 301}
Add 842724 to 308224.
x=\frac{-\left(-918\right)±2\sqrt{287737}}{2\times 301}
Take the square root of 1150948.
x=\frac{918±2\sqrt{287737}}{2\times 301}
The opposite of -918 is 918.
x=\frac{918±2\sqrt{287737}}{602}
Multiply 2 times 301.
x=\frac{2\sqrt{287737}+918}{602}
Now solve the equation x=\frac{918±2\sqrt{287737}}{602} when ± is plus. Add 918 to 2\sqrt{287737}.
x=\frac{\sqrt{287737}+459}{301}
Divide 918+2\sqrt{287737} by 602.
x=\frac{918-2\sqrt{287737}}{602}
Now solve the equation x=\frac{918±2\sqrt{287737}}{602} when ± is minus. Subtract 2\sqrt{287737} from 918.
x=\frac{459-\sqrt{287737}}{301}
Divide 918-2\sqrt{287737} by 602.
x=\frac{\sqrt{287737}+459}{301} x=\frac{459-\sqrt{287737}}{301}
The equation is now solved.
301x^{2}-918x=256
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{301x^{2}-918x}{301}=\frac{256}{301}
Divide both sides by 301.
x^{2}-\frac{918}{301}x=\frac{256}{301}
Dividing by 301 undoes the multiplication by 301.
x^{2}-\frac{918}{301}x+\left(-\frac{459}{301}\right)^{2}=\frac{256}{301}+\left(-\frac{459}{301}\right)^{2}
Divide -\frac{918}{301}, the coefficient of the x term, by 2 to get -\frac{459}{301}. Then add the square of -\frac{459}{301} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{918}{301}x+\frac{210681}{90601}=\frac{256}{301}+\frac{210681}{90601}
Square -\frac{459}{301} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{918}{301}x+\frac{210681}{90601}=\frac{287737}{90601}
Add \frac{256}{301} to \frac{210681}{90601} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{459}{301}\right)^{2}=\frac{287737}{90601}
Factor x^{2}-\frac{918}{301}x+\frac{210681}{90601}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{459}{301}\right)^{2}}=\sqrt{\frac{287737}{90601}}
Take the square root of both sides of the equation.
x-\frac{459}{301}=\frac{\sqrt{287737}}{301} x-\frac{459}{301}=-\frac{\sqrt{287737}}{301}
Simplify.
x=\frac{\sqrt{287737}+459}{301} x=\frac{459-\sqrt{287737}}{301}
Add \frac{459}{301} to both sides of the equation.