Evaluate
7
Factor
7
Share
Copied to clipboard
\begin{array}{l}\phantom{43)}\phantom{1}\\43\overline{)301}\\\end{array}
Use the 1^{st} digit 3 from dividend 301
\begin{array}{l}\phantom{43)}0\phantom{2}\\43\overline{)301}\\\end{array}
Since 3 is less than 43, use the next digit 0 from dividend 301 and add 0 to the quotient
\begin{array}{l}\phantom{43)}0\phantom{3}\\43\overline{)301}\\\end{array}
Use the 2^{nd} digit 0 from dividend 301
\begin{array}{l}\phantom{43)}00\phantom{4}\\43\overline{)301}\\\end{array}
Since 30 is less than 43, use the next digit 1 from dividend 301 and add 0 to the quotient
\begin{array}{l}\phantom{43)}00\phantom{5}\\43\overline{)301}\\\end{array}
Use the 3^{rd} digit 1 from dividend 301
\begin{array}{l}\phantom{43)}007\phantom{6}\\43\overline{)301}\\\phantom{43)}\underline{\phantom{}301\phantom{}}\\\phantom{43)999}0\\\end{array}
Find closest multiple of 43 to 301. We see that 7 \times 43 = 301 is the nearest. Now subtract 301 from 301 to get reminder 0. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }0
Since 0 is less than 43, stop the division. The reminder is 0. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}