Solve for t
t=\frac{\sqrt{21898}}{2}+75\approx 148.989864171
t=-\frac{\sqrt{21898}}{2}+75\approx 1.010135829
Share
Copied to clipboard
301+2t^{2}-300t=0
Subtract 300t from both sides.
2t^{2}-300t+301=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-300\right)±\sqrt{\left(-300\right)^{2}-4\times 2\times 301}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -300 for b, and 301 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-300\right)±\sqrt{90000-4\times 2\times 301}}{2\times 2}
Square -300.
t=\frac{-\left(-300\right)±\sqrt{90000-8\times 301}}{2\times 2}
Multiply -4 times 2.
t=\frac{-\left(-300\right)±\sqrt{90000-2408}}{2\times 2}
Multiply -8 times 301.
t=\frac{-\left(-300\right)±\sqrt{87592}}{2\times 2}
Add 90000 to -2408.
t=\frac{-\left(-300\right)±2\sqrt{21898}}{2\times 2}
Take the square root of 87592.
t=\frac{300±2\sqrt{21898}}{2\times 2}
The opposite of -300 is 300.
t=\frac{300±2\sqrt{21898}}{4}
Multiply 2 times 2.
t=\frac{2\sqrt{21898}+300}{4}
Now solve the equation t=\frac{300±2\sqrt{21898}}{4} when ± is plus. Add 300 to 2\sqrt{21898}.
t=\frac{\sqrt{21898}}{2}+75
Divide 300+2\sqrt{21898} by 4.
t=\frac{300-2\sqrt{21898}}{4}
Now solve the equation t=\frac{300±2\sqrt{21898}}{4} when ± is minus. Subtract 2\sqrt{21898} from 300.
t=-\frac{\sqrt{21898}}{2}+75
Divide 300-2\sqrt{21898} by 4.
t=\frac{\sqrt{21898}}{2}+75 t=-\frac{\sqrt{21898}}{2}+75
The equation is now solved.
301+2t^{2}-300t=0
Subtract 300t from both sides.
2t^{2}-300t=-301
Subtract 301 from both sides. Anything subtracted from zero gives its negation.
\frac{2t^{2}-300t}{2}=-\frac{301}{2}
Divide both sides by 2.
t^{2}+\left(-\frac{300}{2}\right)t=-\frac{301}{2}
Dividing by 2 undoes the multiplication by 2.
t^{2}-150t=-\frac{301}{2}
Divide -300 by 2.
t^{2}-150t+\left(-75\right)^{2}=-\frac{301}{2}+\left(-75\right)^{2}
Divide -150, the coefficient of the x term, by 2 to get -75. Then add the square of -75 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-150t+5625=-\frac{301}{2}+5625
Square -75.
t^{2}-150t+5625=\frac{10949}{2}
Add -\frac{301}{2} to 5625.
\left(t-75\right)^{2}=\frac{10949}{2}
Factor t^{2}-150t+5625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-75\right)^{2}}=\sqrt{\frac{10949}{2}}
Take the square root of both sides of the equation.
t-75=\frac{\sqrt{21898}}{2} t-75=-\frac{\sqrt{21898}}{2}
Simplify.
t=\frac{\sqrt{21898}}{2}+75 t=-\frac{\sqrt{21898}}{2}+75
Add 75 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}