Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-15x^{2}+300x=1800
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-15x^{2}+300x-1800=1800-1800
Subtract 1800 from both sides of the equation.
-15x^{2}+300x-1800=0
Subtracting 1800 from itself leaves 0.
x=\frac{-300±\sqrt{300^{2}-4\left(-15\right)\left(-1800\right)}}{2\left(-15\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -15 for a, 300 for b, and -1800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-300±\sqrt{90000-4\left(-15\right)\left(-1800\right)}}{2\left(-15\right)}
Square 300.
x=\frac{-300±\sqrt{90000+60\left(-1800\right)}}{2\left(-15\right)}
Multiply -4 times -15.
x=\frac{-300±\sqrt{90000-108000}}{2\left(-15\right)}
Multiply 60 times -1800.
x=\frac{-300±\sqrt{-18000}}{2\left(-15\right)}
Add 90000 to -108000.
x=\frac{-300±60\sqrt{5}i}{2\left(-15\right)}
Take the square root of -18000.
x=\frac{-300±60\sqrt{5}i}{-30}
Multiply 2 times -15.
x=\frac{-300+60\sqrt{5}i}{-30}
Now solve the equation x=\frac{-300±60\sqrt{5}i}{-30} when ± is plus. Add -300 to 60i\sqrt{5}.
x=-2\sqrt{5}i+10
Divide -300+60i\sqrt{5} by -30.
x=\frac{-60\sqrt{5}i-300}{-30}
Now solve the equation x=\frac{-300±60\sqrt{5}i}{-30} when ± is minus. Subtract 60i\sqrt{5} from -300.
x=10+2\sqrt{5}i
Divide -300-60i\sqrt{5} by -30.
x=-2\sqrt{5}i+10 x=10+2\sqrt{5}i
The equation is now solved.
-15x^{2}+300x=1800
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-15x^{2}+300x}{-15}=\frac{1800}{-15}
Divide both sides by -15.
x^{2}+\frac{300}{-15}x=\frac{1800}{-15}
Dividing by -15 undoes the multiplication by -15.
x^{2}-20x=\frac{1800}{-15}
Divide 300 by -15.
x^{2}-20x=-120
Divide 1800 by -15.
x^{2}-20x+\left(-10\right)^{2}=-120+\left(-10\right)^{2}
Divide -20, the coefficient of the x term, by 2 to get -10. Then add the square of -10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-20x+100=-120+100
Square -10.
x^{2}-20x+100=-20
Add -120 to 100.
\left(x-10\right)^{2}=-20
Factor x^{2}-20x+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-10\right)^{2}}=\sqrt{-20}
Take the square root of both sides of the equation.
x-10=2\sqrt{5}i x-10=-2\sqrt{5}i
Simplify.
x=10+2\sqrt{5}i x=-2\sqrt{5}i+10
Add 10 to both sides of the equation.