Evaluate
\frac{150000}{41}\approx 3658.536585366
Factor
\frac{2 ^ {4} \cdot 3 \cdot 5 ^ {5}}{41} = 3658\frac{22}{41} = 3658.5365853658536
Share
Copied to clipboard
\begin{array}{l}\phantom{82)}\phantom{1}\\82\overline{)300000}\\\end{array}
Use the 1^{st} digit 3 from dividend 300000
\begin{array}{l}\phantom{82)}0\phantom{2}\\82\overline{)300000}\\\end{array}
Since 3 is less than 82, use the next digit 0 from dividend 300000 and add 0 to the quotient
\begin{array}{l}\phantom{82)}0\phantom{3}\\82\overline{)300000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 300000
\begin{array}{l}\phantom{82)}00\phantom{4}\\82\overline{)300000}\\\end{array}
Since 30 is less than 82, use the next digit 0 from dividend 300000 and add 0 to the quotient
\begin{array}{l}\phantom{82)}00\phantom{5}\\82\overline{)300000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 300000
\begin{array}{l}\phantom{82)}003\phantom{6}\\82\overline{)300000}\\\phantom{82)}\underline{\phantom{}246\phantom{999}}\\\phantom{82)9}54\\\end{array}
Find closest multiple of 82 to 300. We see that 3 \times 82 = 246 is the nearest. Now subtract 246 from 300 to get reminder 54. Add 3 to quotient.
\begin{array}{l}\phantom{82)}003\phantom{7}\\82\overline{)300000}\\\phantom{82)}\underline{\phantom{}246\phantom{999}}\\\phantom{82)9}540\\\end{array}
Use the 4^{th} digit 0 from dividend 300000
\begin{array}{l}\phantom{82)}0036\phantom{8}\\82\overline{)300000}\\\phantom{82)}\underline{\phantom{}246\phantom{999}}\\\phantom{82)9}540\\\phantom{82)}\underline{\phantom{9}492\phantom{99}}\\\phantom{82)99}48\\\end{array}
Find closest multiple of 82 to 540. We see that 6 \times 82 = 492 is the nearest. Now subtract 492 from 540 to get reminder 48. Add 6 to quotient.
\begin{array}{l}\phantom{82)}0036\phantom{9}\\82\overline{)300000}\\\phantom{82)}\underline{\phantom{}246\phantom{999}}\\\phantom{82)9}540\\\phantom{82)}\underline{\phantom{9}492\phantom{99}}\\\phantom{82)99}480\\\end{array}
Use the 5^{th} digit 0 from dividend 300000
\begin{array}{l}\phantom{82)}00365\phantom{10}\\82\overline{)300000}\\\phantom{82)}\underline{\phantom{}246\phantom{999}}\\\phantom{82)9}540\\\phantom{82)}\underline{\phantom{9}492\phantom{99}}\\\phantom{82)99}480\\\phantom{82)}\underline{\phantom{99}410\phantom{9}}\\\phantom{82)999}70\\\end{array}
Find closest multiple of 82 to 480. We see that 5 \times 82 = 410 is the nearest. Now subtract 410 from 480 to get reminder 70. Add 5 to quotient.
\begin{array}{l}\phantom{82)}00365\phantom{11}\\82\overline{)300000}\\\phantom{82)}\underline{\phantom{}246\phantom{999}}\\\phantom{82)9}540\\\phantom{82)}\underline{\phantom{9}492\phantom{99}}\\\phantom{82)99}480\\\phantom{82)}\underline{\phantom{99}410\phantom{9}}\\\phantom{82)999}700\\\end{array}
Use the 6^{th} digit 0 from dividend 300000
\begin{array}{l}\phantom{82)}003658\phantom{12}\\82\overline{)300000}\\\phantom{82)}\underline{\phantom{}246\phantom{999}}\\\phantom{82)9}540\\\phantom{82)}\underline{\phantom{9}492\phantom{99}}\\\phantom{82)99}480\\\phantom{82)}\underline{\phantom{99}410\phantom{9}}\\\phantom{82)999}700\\\phantom{82)}\underline{\phantom{999}656\phantom{}}\\\phantom{82)9999}44\\\end{array}
Find closest multiple of 82 to 700. We see that 8 \times 82 = 656 is the nearest. Now subtract 656 from 700 to get reminder 44. Add 8 to quotient.
\text{Quotient: }3658 \text{Reminder: }44
Since 44 is less than 82, stop the division. The reminder is 44. The topmost line 003658 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3658.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}