Solve for t
t = -\frac{50}{3} = -16\frac{2}{3} \approx -16.666666667
t=-50
Share
Copied to clipboard
12t^{2}+800t+40000=30000
Swap sides so that all variable terms are on the left hand side.
12t^{2}+800t+40000-30000=0
Subtract 30000 from both sides.
12t^{2}+800t+10000=0
Subtract 30000 from 40000 to get 10000.
t=\frac{-800±\sqrt{800^{2}-4\times 12\times 10000}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 800 for b, and 10000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-800±\sqrt{640000-4\times 12\times 10000}}{2\times 12}
Square 800.
t=\frac{-800±\sqrt{640000-48\times 10000}}{2\times 12}
Multiply -4 times 12.
t=\frac{-800±\sqrt{640000-480000}}{2\times 12}
Multiply -48 times 10000.
t=\frac{-800±\sqrt{160000}}{2\times 12}
Add 640000 to -480000.
t=\frac{-800±400}{2\times 12}
Take the square root of 160000.
t=\frac{-800±400}{24}
Multiply 2 times 12.
t=-\frac{400}{24}
Now solve the equation t=\frac{-800±400}{24} when ± is plus. Add -800 to 400.
t=-\frac{50}{3}
Reduce the fraction \frac{-400}{24} to lowest terms by extracting and canceling out 8.
t=-\frac{1200}{24}
Now solve the equation t=\frac{-800±400}{24} when ± is minus. Subtract 400 from -800.
t=-50
Divide -1200 by 24.
t=-\frac{50}{3} t=-50
The equation is now solved.
12t^{2}+800t+40000=30000
Swap sides so that all variable terms are on the left hand side.
12t^{2}+800t=30000-40000
Subtract 40000 from both sides.
12t^{2}+800t=-10000
Subtract 40000 from 30000 to get -10000.
\frac{12t^{2}+800t}{12}=-\frac{10000}{12}
Divide both sides by 12.
t^{2}+\frac{800}{12}t=-\frac{10000}{12}
Dividing by 12 undoes the multiplication by 12.
t^{2}+\frac{200}{3}t=-\frac{10000}{12}
Reduce the fraction \frac{800}{12} to lowest terms by extracting and canceling out 4.
t^{2}+\frac{200}{3}t=-\frac{2500}{3}
Reduce the fraction \frac{-10000}{12} to lowest terms by extracting and canceling out 4.
t^{2}+\frac{200}{3}t+\left(\frac{100}{3}\right)^{2}=-\frac{2500}{3}+\left(\frac{100}{3}\right)^{2}
Divide \frac{200}{3}, the coefficient of the x term, by 2 to get \frac{100}{3}. Then add the square of \frac{100}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{200}{3}t+\frac{10000}{9}=-\frac{2500}{3}+\frac{10000}{9}
Square \frac{100}{3} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{200}{3}t+\frac{10000}{9}=\frac{2500}{9}
Add -\frac{2500}{3} to \frac{10000}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{100}{3}\right)^{2}=\frac{2500}{9}
Factor t^{2}+\frac{200}{3}t+\frac{10000}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{100}{3}\right)^{2}}=\sqrt{\frac{2500}{9}}
Take the square root of both sides of the equation.
t+\frac{100}{3}=\frac{50}{3} t+\frac{100}{3}=-\frac{50}{3}
Simplify.
t=-\frac{50}{3} t=-50
Subtract \frac{100}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}