Evaluate
5
Factor
5
Share
Copied to clipboard
\begin{array}{l}\phantom{600)}\phantom{1}\\600\overline{)3000}\\\end{array}
Use the 1^{st} digit 3 from dividend 3000
\begin{array}{l}\phantom{600)}0\phantom{2}\\600\overline{)3000}\\\end{array}
Since 3 is less than 600, use the next digit 0 from dividend 3000 and add 0 to the quotient
\begin{array}{l}\phantom{600)}0\phantom{3}\\600\overline{)3000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 3000
\begin{array}{l}\phantom{600)}00\phantom{4}\\600\overline{)3000}\\\end{array}
Since 30 is less than 600, use the next digit 0 from dividend 3000 and add 0 to the quotient
\begin{array}{l}\phantom{600)}00\phantom{5}\\600\overline{)3000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 3000
\begin{array}{l}\phantom{600)}000\phantom{6}\\600\overline{)3000}\\\end{array}
Since 300 is less than 600, use the next digit 0 from dividend 3000 and add 0 to the quotient
\begin{array}{l}\phantom{600)}000\phantom{7}\\600\overline{)3000}\\\end{array}
Use the 4^{th} digit 0 from dividend 3000
\begin{array}{l}\phantom{600)}0005\phantom{8}\\600\overline{)3000}\\\phantom{600)}\underline{\phantom{}3000\phantom{}}\\\phantom{600)9999}0\\\end{array}
Find closest multiple of 600 to 3000. We see that 5 \times 600 = 3000 is the nearest. Now subtract 3000 from 3000 to get reminder 0. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }0
Since 0 is less than 600, stop the division. The reminder is 0. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}