Solve for x
x=\frac{-6\sqrt{286}-89}{125}\approx -1.523753657
x=\frac{6\sqrt{286}-89}{125}\approx 0.099753657
Graph
Share
Copied to clipboard
3000\left(x+1\right)^{2}=\left(x+1\right)\times 1728+1728
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)^{2}, the least common multiple of 1+x,\left(1+x\right)^{2}.
3000\left(x^{2}+2x+1\right)=\left(x+1\right)\times 1728+1728
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
3000x^{2}+6000x+3000=\left(x+1\right)\times 1728+1728
Use the distributive property to multiply 3000 by x^{2}+2x+1.
3000x^{2}+6000x+3000=1728x+1728+1728
Use the distributive property to multiply x+1 by 1728.
3000x^{2}+6000x+3000=1728x+3456
Add 1728 and 1728 to get 3456.
3000x^{2}+6000x+3000-1728x=3456
Subtract 1728x from both sides.
3000x^{2}+4272x+3000=3456
Combine 6000x and -1728x to get 4272x.
3000x^{2}+4272x+3000-3456=0
Subtract 3456 from both sides.
3000x^{2}+4272x-456=0
Subtract 3456 from 3000 to get -456.
x=\frac{-4272±\sqrt{4272^{2}-4\times 3000\left(-456\right)}}{2\times 3000}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3000 for a, 4272 for b, and -456 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4272±\sqrt{18249984-4\times 3000\left(-456\right)}}{2\times 3000}
Square 4272.
x=\frac{-4272±\sqrt{18249984-12000\left(-456\right)}}{2\times 3000}
Multiply -4 times 3000.
x=\frac{-4272±\sqrt{18249984+5472000}}{2\times 3000}
Multiply -12000 times -456.
x=\frac{-4272±\sqrt{23721984}}{2\times 3000}
Add 18249984 to 5472000.
x=\frac{-4272±288\sqrt{286}}{2\times 3000}
Take the square root of 23721984.
x=\frac{-4272±288\sqrt{286}}{6000}
Multiply 2 times 3000.
x=\frac{288\sqrt{286}-4272}{6000}
Now solve the equation x=\frac{-4272±288\sqrt{286}}{6000} when ± is plus. Add -4272 to 288\sqrt{286}.
x=\frac{6\sqrt{286}-89}{125}
Divide -4272+288\sqrt{286} by 6000.
x=\frac{-288\sqrt{286}-4272}{6000}
Now solve the equation x=\frac{-4272±288\sqrt{286}}{6000} when ± is minus. Subtract 288\sqrt{286} from -4272.
x=\frac{-6\sqrt{286}-89}{125}
Divide -4272-288\sqrt{286} by 6000.
x=\frac{6\sqrt{286}-89}{125} x=\frac{-6\sqrt{286}-89}{125}
The equation is now solved.
3000\left(x+1\right)^{2}=\left(x+1\right)\times 1728+1728
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)^{2}, the least common multiple of 1+x,\left(1+x\right)^{2}.
3000\left(x^{2}+2x+1\right)=\left(x+1\right)\times 1728+1728
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
3000x^{2}+6000x+3000=\left(x+1\right)\times 1728+1728
Use the distributive property to multiply 3000 by x^{2}+2x+1.
3000x^{2}+6000x+3000=1728x+1728+1728
Use the distributive property to multiply x+1 by 1728.
3000x^{2}+6000x+3000=1728x+3456
Add 1728 and 1728 to get 3456.
3000x^{2}+6000x+3000-1728x=3456
Subtract 1728x from both sides.
3000x^{2}+4272x+3000=3456
Combine 6000x and -1728x to get 4272x.
3000x^{2}+4272x=3456-3000
Subtract 3000 from both sides.
3000x^{2}+4272x=456
Subtract 3000 from 3456 to get 456.
\frac{3000x^{2}+4272x}{3000}=\frac{456}{3000}
Divide both sides by 3000.
x^{2}+\frac{4272}{3000}x=\frac{456}{3000}
Dividing by 3000 undoes the multiplication by 3000.
x^{2}+\frac{178}{125}x=\frac{456}{3000}
Reduce the fraction \frac{4272}{3000} to lowest terms by extracting and canceling out 24.
x^{2}+\frac{178}{125}x=\frac{19}{125}
Reduce the fraction \frac{456}{3000} to lowest terms by extracting and canceling out 24.
x^{2}+\frac{178}{125}x+\left(\frac{89}{125}\right)^{2}=\frac{19}{125}+\left(\frac{89}{125}\right)^{2}
Divide \frac{178}{125}, the coefficient of the x term, by 2 to get \frac{89}{125}. Then add the square of \frac{89}{125} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{178}{125}x+\frac{7921}{15625}=\frac{19}{125}+\frac{7921}{15625}
Square \frac{89}{125} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{178}{125}x+\frac{7921}{15625}=\frac{10296}{15625}
Add \frac{19}{125} to \frac{7921}{15625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{89}{125}\right)^{2}=\frac{10296}{15625}
Factor x^{2}+\frac{178}{125}x+\frac{7921}{15625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{89}{125}\right)^{2}}=\sqrt{\frac{10296}{15625}}
Take the square root of both sides of the equation.
x+\frac{89}{125}=\frac{6\sqrt{286}}{125} x+\frac{89}{125}=-\frac{6\sqrt{286}}{125}
Simplify.
x=\frac{6\sqrt{286}-89}{125} x=\frac{-6\sqrt{286}-89}{125}
Subtract \frac{89}{125} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}