Solve for x
x=\frac{200\sqrt{6}}{3}-100\approx 63.299316186
x=-\frac{200\sqrt{6}}{3}-100\approx -263.299316186
Graph
Share
Copied to clipboard
\left(300-x\right)^{2}=\left(2\sqrt{10000+x^{2}}\right)^{2}
Square both sides of the equation.
90000-600x+x^{2}=\left(2\sqrt{10000+x^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(300-x\right)^{2}.
90000-600x+x^{2}=2^{2}\left(\sqrt{10000+x^{2}}\right)^{2}
Expand \left(2\sqrt{10000+x^{2}}\right)^{2}.
90000-600x+x^{2}=4\left(\sqrt{10000+x^{2}}\right)^{2}
Calculate 2 to the power of 2 and get 4.
90000-600x+x^{2}=4\left(10000+x^{2}\right)
Calculate \sqrt{10000+x^{2}} to the power of 2 and get 10000+x^{2}.
90000-600x+x^{2}=40000+4x^{2}
Use the distributive property to multiply 4 by 10000+x^{2}.
90000-600x+x^{2}-40000=4x^{2}
Subtract 40000 from both sides.
50000-600x+x^{2}=4x^{2}
Subtract 40000 from 90000 to get 50000.
50000-600x+x^{2}-4x^{2}=0
Subtract 4x^{2} from both sides.
50000-600x-3x^{2}=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}-600x+50000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-600\right)±\sqrt{\left(-600\right)^{2}-4\left(-3\right)\times 50000}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -600 for b, and 50000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-600\right)±\sqrt{360000-4\left(-3\right)\times 50000}}{2\left(-3\right)}
Square -600.
x=\frac{-\left(-600\right)±\sqrt{360000+12\times 50000}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-600\right)±\sqrt{360000+600000}}{2\left(-3\right)}
Multiply 12 times 50000.
x=\frac{-\left(-600\right)±\sqrt{960000}}{2\left(-3\right)}
Add 360000 to 600000.
x=\frac{-\left(-600\right)±400\sqrt{6}}{2\left(-3\right)}
Take the square root of 960000.
x=\frac{600±400\sqrt{6}}{2\left(-3\right)}
The opposite of -600 is 600.
x=\frac{600±400\sqrt{6}}{-6}
Multiply 2 times -3.
x=\frac{400\sqrt{6}+600}{-6}
Now solve the equation x=\frac{600±400\sqrt{6}}{-6} when ± is plus. Add 600 to 400\sqrt{6}.
x=-\frac{200\sqrt{6}}{3}-100
Divide 600+400\sqrt{6} by -6.
x=\frac{600-400\sqrt{6}}{-6}
Now solve the equation x=\frac{600±400\sqrt{6}}{-6} when ± is minus. Subtract 400\sqrt{6} from 600.
x=\frac{200\sqrt{6}}{3}-100
Divide 600-400\sqrt{6} by -6.
x=-\frac{200\sqrt{6}}{3}-100 x=\frac{200\sqrt{6}}{3}-100
The equation is now solved.
300-\left(-\frac{200\sqrt{6}}{3}-100\right)=2\sqrt{10000+\left(-\frac{200\sqrt{6}}{3}-100\right)^{2}}
Substitute -\frac{200\sqrt{6}}{3}-100 for x in the equation 300-x=2\sqrt{10000+x^{2}}.
400+\frac{200}{3}\times 6^{\frac{1}{2}}=400+\frac{200}{3}\times 6^{\frac{1}{2}}
Simplify. The value x=-\frac{200\sqrt{6}}{3}-100 satisfies the equation.
300-\left(\frac{200\sqrt{6}}{3}-100\right)=2\sqrt{10000+\left(\frac{200\sqrt{6}}{3}-100\right)^{2}}
Substitute \frac{200\sqrt{6}}{3}-100 for x in the equation 300-x=2\sqrt{10000+x^{2}}.
400-\frac{200}{3}\times 6^{\frac{1}{2}}=400-\frac{200}{3}\times 6^{\frac{1}{2}}
Simplify. The value x=\frac{200\sqrt{6}}{3}-100 satisfies the equation.
x=-\frac{200\sqrt{6}}{3}-100 x=\frac{200\sqrt{6}}{3}-100
List all solutions of 300-x=2\sqrt{x^{2}+10000}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}