Solve for x
x=\frac{300}{499}\approx 0.601202405
Graph
Share
Copied to clipboard
300\times \frac{1}{20}x=\left(300+x\right)\times \frac{3}{100}
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
\frac{300}{20}x=\left(300+x\right)\times \frac{3}{100}
Multiply 300 and \frac{1}{20} to get \frac{300}{20}.
15x=\left(300+x\right)\times \frac{3}{100}
Divide 300 by 20 to get 15.
15x=300\times \frac{3}{100}+x\times \frac{3}{100}
Use the distributive property to multiply 300+x by \frac{3}{100}.
15x=\frac{300\times 3}{100}+x\times \frac{3}{100}
Express 300\times \frac{3}{100} as a single fraction.
15x=\frac{900}{100}+x\times \frac{3}{100}
Multiply 300 and 3 to get 900.
15x=9+x\times \frac{3}{100}
Divide 900 by 100 to get 9.
15x-x\times \frac{3}{100}=9
Subtract x\times \frac{3}{100} from both sides.
\frac{1497}{100}x=9
Combine 15x and -x\times \frac{3}{100} to get \frac{1497}{100}x.
x=9\times \frac{100}{1497}
Multiply both sides by \frac{100}{1497}, the reciprocal of \frac{1497}{100}.
x=\frac{9\times 100}{1497}
Express 9\times \frac{100}{1497} as a single fraction.
x=\frac{900}{1497}
Multiply 9 and 100 to get 900.
x=\frac{300}{499}
Reduce the fraction \frac{900}{1497} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}