Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

300\times \frac{1}{20}x=\left(300+x\right)\times \frac{3}{100}
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
\frac{300}{20}x=\left(300+x\right)\times \frac{3}{100}
Multiply 300 and \frac{1}{20} to get \frac{300}{20}.
15x=\left(300+x\right)\times \frac{3}{100}
Divide 300 by 20 to get 15.
15x=300\times \frac{3}{100}+x\times \frac{3}{100}
Use the distributive property to multiply 300+x by \frac{3}{100}.
15x=\frac{300\times 3}{100}+x\times \frac{3}{100}
Express 300\times \frac{3}{100} as a single fraction.
15x=\frac{900}{100}+x\times \frac{3}{100}
Multiply 300 and 3 to get 900.
15x=9+x\times \frac{3}{100}
Divide 900 by 100 to get 9.
15x-x\times \frac{3}{100}=9
Subtract x\times \frac{3}{100} from both sides.
\frac{1497}{100}x=9
Combine 15x and -x\times \frac{3}{100} to get \frac{1497}{100}x.
x=9\times \frac{100}{1497}
Multiply both sides by \frac{100}{1497}, the reciprocal of \frac{1497}{100}.
x=\frac{9\times 100}{1497}
Express 9\times \frac{100}{1497} as a single fraction.
x=\frac{900}{1497}
Multiply 9 and 100 to get 900.
x=\frac{300}{499}
Reduce the fraction \frac{900}{1497} to lowest terms by extracting and canceling out 3.