Evaluate
\frac{100}{7}\approx 14.285714286
Factor
\frac{2 ^ {2} \cdot 5 ^ {2}}{7} = 14\frac{2}{7} = 14.285714285714286
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)300}\\\end{array}
Use the 1^{st} digit 3 from dividend 300
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)300}\\\end{array}
Since 3 is less than 21, use the next digit 0 from dividend 300 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)300}\\\end{array}
Use the 2^{nd} digit 0 from dividend 300
\begin{array}{l}\phantom{21)}01\phantom{4}\\21\overline{)300}\\\phantom{21)}\underline{\phantom{}21\phantom{9}}\\\phantom{21)9}9\\\end{array}
Find closest multiple of 21 to 30. We see that 1 \times 21 = 21 is the nearest. Now subtract 21 from 30 to get reminder 9. Add 1 to quotient.
\begin{array}{l}\phantom{21)}01\phantom{5}\\21\overline{)300}\\\phantom{21)}\underline{\phantom{}21\phantom{9}}\\\phantom{21)9}90\\\end{array}
Use the 3^{rd} digit 0 from dividend 300
\begin{array}{l}\phantom{21)}014\phantom{6}\\21\overline{)300}\\\phantom{21)}\underline{\phantom{}21\phantom{9}}\\\phantom{21)9}90\\\phantom{21)}\underline{\phantom{9}84\phantom{}}\\\phantom{21)99}6\\\end{array}
Find closest multiple of 21 to 90. We see that 4 \times 21 = 84 is the nearest. Now subtract 84 from 90 to get reminder 6. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }6
Since 6 is less than 21, stop the division. The reminder is 6. The topmost line 014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}