Evaluate
\frac{75}{4}=18.75
Factor
\frac{3 \cdot 5 ^ {2}}{2 ^ {2}} = 18\frac{3}{4} = 18.75
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)300}\\\end{array}
Use the 1^{st} digit 3 from dividend 300
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)300}\\\end{array}
Since 3 is less than 16, use the next digit 0 from dividend 300 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)300}\\\end{array}
Use the 2^{nd} digit 0 from dividend 300
\begin{array}{l}\phantom{16)}01\phantom{4}\\16\overline{)300}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)}14\\\end{array}
Find closest multiple of 16 to 30. We see that 1 \times 16 = 16 is the nearest. Now subtract 16 from 30 to get reminder 14. Add 1 to quotient.
\begin{array}{l}\phantom{16)}01\phantom{5}\\16\overline{)300}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)}140\\\end{array}
Use the 3^{rd} digit 0 from dividend 300
\begin{array}{l}\phantom{16)}018\phantom{6}\\16\overline{)300}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)}140\\\phantom{16)}\underline{\phantom{}128\phantom{}}\\\phantom{16)9}12\\\end{array}
Find closest multiple of 16 to 140. We see that 8 \times 16 = 128 is the nearest. Now subtract 128 from 140 to get reminder 12. Add 8 to quotient.
\text{Quotient: }18 \text{Reminder: }12
Since 12 is less than 16, stop the division. The reminder is 12. The topmost line 018 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}