Evaluate
\frac{10}{3}\approx 3.333333333
Factor
\frac{2 \cdot 5}{3} = 3\frac{1}{3} = 3.3333333333333335
Share
Copied to clipboard
\begin{array}{l}\phantom{90)}\phantom{1}\\90\overline{)300}\\\end{array}
Use the 1^{st} digit 3 from dividend 300
\begin{array}{l}\phantom{90)}0\phantom{2}\\90\overline{)300}\\\end{array}
Since 3 is less than 90, use the next digit 0 from dividend 300 and add 0 to the quotient
\begin{array}{l}\phantom{90)}0\phantom{3}\\90\overline{)300}\\\end{array}
Use the 2^{nd} digit 0 from dividend 300
\begin{array}{l}\phantom{90)}00\phantom{4}\\90\overline{)300}\\\end{array}
Since 30 is less than 90, use the next digit 0 from dividend 300 and add 0 to the quotient
\begin{array}{l}\phantom{90)}00\phantom{5}\\90\overline{)300}\\\end{array}
Use the 3^{rd} digit 0 from dividend 300
\begin{array}{l}\phantom{90)}003\phantom{6}\\90\overline{)300}\\\phantom{90)}\underline{\phantom{}270\phantom{}}\\\phantom{90)9}30\\\end{array}
Find closest multiple of 90 to 300. We see that 3 \times 90 = 270 is the nearest. Now subtract 270 from 300 to get reminder 30. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }30
Since 30 is less than 90, stop the division. The reminder is 30. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}