Evaluate
\frac{300}{89}\approx 3.370786517
Factor
\frac{2 ^ {2} \cdot 3 \cdot 5 ^ {2}}{89} = 3\frac{33}{89} = 3.3707865168539324
Share
Copied to clipboard
\begin{array}{l}\phantom{89)}\phantom{1}\\89\overline{)300}\\\end{array}
Use the 1^{st} digit 3 from dividend 300
\begin{array}{l}\phantom{89)}0\phantom{2}\\89\overline{)300}\\\end{array}
Since 3 is less than 89, use the next digit 0 from dividend 300 and add 0 to the quotient
\begin{array}{l}\phantom{89)}0\phantom{3}\\89\overline{)300}\\\end{array}
Use the 2^{nd} digit 0 from dividend 300
\begin{array}{l}\phantom{89)}00\phantom{4}\\89\overline{)300}\\\end{array}
Since 30 is less than 89, use the next digit 0 from dividend 300 and add 0 to the quotient
\begin{array}{l}\phantom{89)}00\phantom{5}\\89\overline{)300}\\\end{array}
Use the 3^{rd} digit 0 from dividend 300
\begin{array}{l}\phantom{89)}003\phantom{6}\\89\overline{)300}\\\phantom{89)}\underline{\phantom{}267\phantom{}}\\\phantom{89)9}33\\\end{array}
Find closest multiple of 89 to 300. We see that 3 \times 89 = 267 is the nearest. Now subtract 267 from 300 to get reminder 33. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }33
Since 33 is less than 89, stop the division. The reminder is 33. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}