Evaluate
\frac{150}{41}\approx 3.658536585
Factor
\frac{2 \cdot 3 \cdot 5 ^ {2}}{41} = 3\frac{27}{41} = 3.658536585365854
Share
Copied to clipboard
\begin{array}{l}\phantom{82)}\phantom{1}\\82\overline{)300}\\\end{array}
Use the 1^{st} digit 3 from dividend 300
\begin{array}{l}\phantom{82)}0\phantom{2}\\82\overline{)300}\\\end{array}
Since 3 is less than 82, use the next digit 0 from dividend 300 and add 0 to the quotient
\begin{array}{l}\phantom{82)}0\phantom{3}\\82\overline{)300}\\\end{array}
Use the 2^{nd} digit 0 from dividend 300
\begin{array}{l}\phantom{82)}00\phantom{4}\\82\overline{)300}\\\end{array}
Since 30 is less than 82, use the next digit 0 from dividend 300 and add 0 to the quotient
\begin{array}{l}\phantom{82)}00\phantom{5}\\82\overline{)300}\\\end{array}
Use the 3^{rd} digit 0 from dividend 300
\begin{array}{l}\phantom{82)}003\phantom{6}\\82\overline{)300}\\\phantom{82)}\underline{\phantom{}246\phantom{}}\\\phantom{82)9}54\\\end{array}
Find closest multiple of 82 to 300. We see that 3 \times 82 = 246 is the nearest. Now subtract 246 from 300 to get reminder 54. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }54
Since 54 is less than 82, stop the division. The reminder is 54. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}