Evaluate
\frac{60}{7}\approx 8.571428571
Factor
\frac{2 ^ {2} \cdot 3 \cdot 5}{7} = 8\frac{4}{7} = 8.571428571428571
Share
Copied to clipboard
\begin{array}{l}\phantom{35)}\phantom{1}\\35\overline{)300}\\\end{array}
Use the 1^{st} digit 3 from dividend 300
\begin{array}{l}\phantom{35)}0\phantom{2}\\35\overline{)300}\\\end{array}
Since 3 is less than 35, use the next digit 0 from dividend 300 and add 0 to the quotient
\begin{array}{l}\phantom{35)}0\phantom{3}\\35\overline{)300}\\\end{array}
Use the 2^{nd} digit 0 from dividend 300
\begin{array}{l}\phantom{35)}00\phantom{4}\\35\overline{)300}\\\end{array}
Since 30 is less than 35, use the next digit 0 from dividend 300 and add 0 to the quotient
\begin{array}{l}\phantom{35)}00\phantom{5}\\35\overline{)300}\\\end{array}
Use the 3^{rd} digit 0 from dividend 300
\begin{array}{l}\phantom{35)}008\phantom{6}\\35\overline{)300}\\\phantom{35)}\underline{\phantom{}280\phantom{}}\\\phantom{35)9}20\\\end{array}
Find closest multiple of 35 to 300. We see that 8 \times 35 = 280 is the nearest. Now subtract 280 from 300 to get reminder 20. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }20
Since 20 is less than 35, stop the division. The reminder is 20. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}