Evaluate
15
Factor
3\times 5
Share
Copied to clipboard
\begin{array}{l}\phantom{20)}\phantom{1}\\20\overline{)300}\\\end{array}
Use the 1^{st} digit 3 from dividend 300
\begin{array}{l}\phantom{20)}0\phantom{2}\\20\overline{)300}\\\end{array}
Since 3 is less than 20, use the next digit 0 from dividend 300 and add 0 to the quotient
\begin{array}{l}\phantom{20)}0\phantom{3}\\20\overline{)300}\\\end{array}
Use the 2^{nd} digit 0 from dividend 300
\begin{array}{l}\phantom{20)}01\phantom{4}\\20\overline{)300}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)}10\\\end{array}
Find closest multiple of 20 to 30. We see that 1 \times 20 = 20 is the nearest. Now subtract 20 from 30 to get reminder 10. Add 1 to quotient.
\begin{array}{l}\phantom{20)}01\phantom{5}\\20\overline{)300}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)}100\\\end{array}
Use the 3^{rd} digit 0 from dividend 300
\begin{array}{l}\phantom{20)}015\phantom{6}\\20\overline{)300}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)}100\\\phantom{20)}\underline{\phantom{}100\phantom{}}\\\phantom{20)999}0\\\end{array}
Find closest multiple of 20 to 100. We see that 5 \times 20 = 100 is the nearest. Now subtract 100 from 100 to get reminder 0. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }0
Since 0 is less than 20, stop the division. The reminder is 0. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}