Evaluate
\frac{300}{193}\approx 1.554404145
Factor
\frac{2 ^ {2} \cdot 3 \cdot 5 ^ {2}}{193} = 1\frac{107}{193} = 1.5544041450777202
Share
Copied to clipboard
\begin{array}{l}\phantom{193)}\phantom{1}\\193\overline{)300}\\\end{array}
Use the 1^{st} digit 3 from dividend 300
\begin{array}{l}\phantom{193)}0\phantom{2}\\193\overline{)300}\\\end{array}
Since 3 is less than 193, use the next digit 0 from dividend 300 and add 0 to the quotient
\begin{array}{l}\phantom{193)}0\phantom{3}\\193\overline{)300}\\\end{array}
Use the 2^{nd} digit 0 from dividend 300
\begin{array}{l}\phantom{193)}00\phantom{4}\\193\overline{)300}\\\end{array}
Since 30 is less than 193, use the next digit 0 from dividend 300 and add 0 to the quotient
\begin{array}{l}\phantom{193)}00\phantom{5}\\193\overline{)300}\\\end{array}
Use the 3^{rd} digit 0 from dividend 300
\begin{array}{l}\phantom{193)}001\phantom{6}\\193\overline{)300}\\\phantom{193)}\underline{\phantom{}193\phantom{}}\\\phantom{193)}107\\\end{array}
Find closest multiple of 193 to 300. We see that 1 \times 193 = 193 is the nearest. Now subtract 193 from 300 to get reminder 107. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }107
Since 107 is less than 193, stop the division. The reminder is 107. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}