Evaluate
\frac{300}{157}\approx 1.910828025
Factor
\frac{2 ^ {2} \cdot 3 \cdot 5 ^ {2}}{157} = 1\frac{143}{157} = 1.910828025477707
Share
Copied to clipboard
\begin{array}{l}\phantom{157)}\phantom{1}\\157\overline{)300}\\\end{array}
Use the 1^{st} digit 3 from dividend 300
\begin{array}{l}\phantom{157)}0\phantom{2}\\157\overline{)300}\\\end{array}
Since 3 is less than 157, use the next digit 0 from dividend 300 and add 0 to the quotient
\begin{array}{l}\phantom{157)}0\phantom{3}\\157\overline{)300}\\\end{array}
Use the 2^{nd} digit 0 from dividend 300
\begin{array}{l}\phantom{157)}00\phantom{4}\\157\overline{)300}\\\end{array}
Since 30 is less than 157, use the next digit 0 from dividend 300 and add 0 to the quotient
\begin{array}{l}\phantom{157)}00\phantom{5}\\157\overline{)300}\\\end{array}
Use the 3^{rd} digit 0 from dividend 300
\begin{array}{l}\phantom{157)}001\phantom{6}\\157\overline{)300}\\\phantom{157)}\underline{\phantom{}157\phantom{}}\\\phantom{157)}143\\\end{array}
Find closest multiple of 157 to 300. We see that 1 \times 157 = 157 is the nearest. Now subtract 157 from 300 to get reminder 143. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }143
Since 143 is less than 157, stop the division. The reminder is 143. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}